Skip to main content
Log in

A modified “Hole” theory for solute impurity diffusion in liquid metals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A modified “hole” theory for solute impurity diffusion in liquid metals is presented. The theory calculates an “effective” valence for the solute impurities by assuming that the bulk valences of the solvent and solute metals are those given by the Engel-Brewer theory (one for bcc structures, two for cph structures, and three for fcc structures). The effects of balancing the Fermi energy level of the solute with that of the solvent and differences in zero point energy are then considered in calculating the effective valence. The effective valence is then used to calculate a value of diffusional activation energy from a modified Lazarus-LeClaire approach. It is shown that the proposed theory works very well for solute impurity diffusion of a number of solutes in Al, Cu, Ga, Ag, Pb, and Sn, but the paucity of diffusion data is a hindrance to development of theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.P. Gupta: Proc. Int. Conf. on the Properties of Liquid Metals, Taylor & Francis LTD, London, England held at Brookhaven, New York, NY, 1966; Adv. Phys., 1967, vol. 16, pp. 333–50.

    Google Scholar 

  2. A. Bruson and M. Gerl: Phys. Rev. B, 1980, vol. 21, pp. 5447–54.

    Article  CAS  Google Scholar 

  3. Tatsuhiko Ejima and Tsutomu Yamamura: The Properties of Liquid Metals, Proc. 2nd Int. Conf., Tokyo, Japan, Sept. 3–8, 1972, Sakae Takeuchi, ed., Taylor and Francis Ltd., London, 1973, pp. 537–41.

    Google Scholar 

  4. D. Lazarus: Phys. Rev., 1954, vol. 93, pp. 973–76.

    Article  CAS  Google Scholar 

  5. A.D. LeClaire: Phil. Mag., 1962, vol. 7, pp. 141–67.

    Google Scholar 

  6. S.M. Klotsman: Def. Diffus. Forum, 1989, vols. 66–69, pp. 85–102.

    Google Scholar 

  7. Vladimyr Burachynsky and J.R. Cahoon: Metall. Mater. Trans. A, 1997, Vol. 28A, pp. 563–82.

    Google Scholar 

  8. Bulbul Chakraborty, Lars C. Smedskjaer, and Steven J. Rothman: J. Phys., 1984, vol. F 14, pp. 301–08.

    Article  Google Scholar 

  9. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, NY, 1980, pp. 116–17.

    Google Scholar 

  10. Mitsuo Shimoji and Toshio Itami: Atomic Transport in Liquid Metals, Defect and Diffusion Data, F.H. Wohlbier, ed., 1986, vol. 43, pp. 1–344. Trans Tech Publications, Switzerland, Germany UK, USA.

    Google Scholar 

  11. P.E. Eriksson, S.J. Larsson, and A. Lodding: Z. Naturforchung, 1974, vol. 27a, pp. 893–96.

    Google Scholar 

  12. S. Larson, L. Broman, C. Roxbergh, and A. Lodding: Z. Naturforchung, 1970, vol. 25a, pp. 1472–76.

    Google Scholar 

  13. Eugene F. Broome and Hugh A. Walls: Trans. TMS-AIME, 1969, vol. 245, pp. 739–41.

    CAS  Google Scholar 

  14. Von. H. Cordes and G. Döge: Z. Naturforchung, 1963, vol. 18a, pp. 835–39.

    CAS  Google Scholar 

  15. C.H. Ma and R.A. Swalin: J. Chem. Phys., 1962, vol. 36, pp. 3014–18.

    Article  CAS  Google Scholar 

  16. J.R. Cahoon and Oleg D. Sherby: Metall. Trans. A, 1992, vol. 23A, pp. 2491–2500.

    CAS  Google Scholar 

  17. Arthur Paskin: Proc. Int. Conf. on the Properties of Liquid Metals, Taylor & Francis LTD, London, England held at Brookhaven, New York, NY, 1996: Adv. Phys., 1967, vol. 16, pp. 233–40.

    Google Scholar 

  18. T. Itami, M. Shimoji, J.A. Meijer, and W. van der Lugt: J. Phys. F: Met. Phys., 1988, vol. 18, pp. 2409–19.

    Article  CAS  Google Scholar 

  19. W. Hume-Rothery: Prog. Mater. Sci., 1968, vol. 13, pp. 229–65.

    Article  Google Scholar 

  20. B.D. Sharma and S.P. Ray: Trans. TMS-AIME, 1969, vol. 245, pp. 2355–57.

    CAS  Google Scholar 

  21. J.E. Inglesfield: J. Phys. F: Met. Phys., 1972, vol. 2, pp. 878–92.

    Article  CAS  Google Scholar 

  22. A.D. LeClaire: Phil. Mag., 1964, vol. 10, pp. 641–50.

    CAS  Google Scholar 

  23. J.H.O. Varley: Phil. Mag., 1954, vol. 45, pp. 887–916.

    CAS  Google Scholar 

  24. CRC Handbook of Chemistry and Physics, 76th ed., David R. Lide, ed., CRC Press, Boca Raton, FL, 1995–1996, pp. 10:207–10:208.

    Google Scholar 

  25. Charlotte E. Moore: Atomic Energy Levels as Derived from the Analysis of Optical Spectra, 1949, vol. 1, 1952, vol. 2, 1958, vol. 3, United States Department of Commerce, National Bureau of Standards, Washington, DC.

    Google Scholar 

  26. W.C. Martin, Romuald Zalubas, and Lucy Hagan: Atomic Energy Levels—The Rare Earth Elements, National Bureau of Standards, Washington, DC, 1978.

    Google Scholar 

  27. Richard A. Flinn and Paul K. Trojan: Engineering Materials and Their Applications, 4th ed., Houghton-Mifflin Co., Boston, 1990, pp. 57–59.

    Google Scholar 

  28. N.F. Mott and H. Jones: The Theory of the Properties of Metals and Alloys, Clarendon Press, Oxford, United Kingdom, 1936, p. 140.

    Google Scholar 

  29. Daniel D. Pollack: Physical Properties of Materials for Engineers, 2nd ed., CRC Press, Boca Raton, FL, 1993, p. 137.

    Google Scholar 

  30. L.C.R. Alfred and N.H. March: Phys. Rev., 1956, vol. 103, pp. 877–88.

    Article  CAS  Google Scholar 

  31. Kwai Umeda and Shigehiro Kobayashi: J. Phys. Soc. Jpn., 1958, vol. 13, pp. 148–52.

    Article  CAS  Google Scholar 

  32. N. Isono, Patrick Michael Smith, D. Turnball, and M.J. Aziz: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 725–30.

    CAS  Google Scholar 

  33. T. Ejima and T. Yamamura: Proc. 4th Int. Conf. on Liquid and Amorphous Metals, Grenoble, France, July 7–11, 1980; J. Phys., Coll. 8, Suppl. J. Phys., 1980, pp. c8:345–c8:348.

  34. S.J. Larson, P.E. Eriksson, and A. Lodding: Z. Naturforschung, 1974, vol. 29a, pp. 961–63.

    Google Scholar 

  35. Y.P. Gupta and H.S. Wang: Trans. TMS-AIME, 1969, vol. 245, pp. 619–22.

    CAS  Google Scholar 

  36. S.J. Rothman and L.D. Hall: Trans. AIME, J Met., 1956, vol. 8, pp. 199–203.

    CAS  Google Scholar 

  37. Kichizo Niwa, Mitsuo Shimoji, Satoshi Kado, Yoshihiko Watanabe, and Toshio Yokokawa: Trans. TMS-AIME, 1957, vol. 209, pp. 96–101.

    Google Scholar 

  38. Dale Oakesan and Anil V. Virkar: J. Mater. Sci., 1984, vol. 19, pp. 213–22.

    Article  Google Scholar 

  39. Morteza Mirshamsi, Andrew Cosgarea, Jr., and William R. Upthegrove: Trans. TMS-AIME, 1966, vol. 236, pp. 122–28.

    CAS  Google Scholar 

  40. H. Jones: The Theory of Brillouin Zones and Electronic States in Crystals, 2nd revised ed., North-Holland Publishing Company, Amsterdam, 1975, p. 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahoon, J.R. A modified “Hole” theory for solute impurity diffusion in liquid metals. Metall Mater Trans A 28, 583–593 (1997). https://doi.org/10.1007/s11661-997-0044-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0044-3

Keywords

Navigation