Skip to main content
Log in

A theory for solute impurity diffusion, which considers engel-brewer valences, balancing the fermi energy levels of solvent and solute, and differences in zero point energy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A theory that assumes the Engel-Brewer valence of elements (one for bcc structures, two for cph structures, and three for fcc structures) and considers the effects of balancing the solute and solvent Fermi energy levels and differences in zero point energy between solvent and solute atoms to calculate an “effective” relative valence for solute impurities is presented. The calculated values of relative valence and the experimental values of the differences in diffusional activation energy between solute and solvent atoms, ΔQ, are compared to the values of ΔH 2 + ΔE calculated from the Lazarus-LeClaire theory for several solute impurities in ten solvent metals. The calculated results agree very well with the experimental values for the large majority of solutes. The theory presented adequately describes solute impurity diffusion in both α-Fe and γ-Fe, Al, Ni, and the noble metals. In particular, the low activation energies for impurity diffusion of the alkali metals (ground state valence of one) in Al (ground state valence of three) are accounted for by the theory. It is shown that the diffusion of the electronegative solute impurities (Cr, Mn, Fe, and Co) in Al is not anomalous when the relative valence is calculated by the proposed theory. The diffusion of electronegative solute impurities in the noble metals, which has been problematic in the past, is also well described by the proposed theory. The proposed theory introduces a simple method of estimating the effective electron densities of solute impurities and illustrates that the Lazarus-LeClaire theory adequately describes solute impurity diffusion in the ten solvent metals studied. It is expected that more accurate calculations of effective electron density for solute impurities would result in even better agreement between experimental and calculated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Lazarus: Phys. Rev., 1954, vol. 93, pp. 973–76.

    Article  CAS  Google Scholar 

  2. A.D. LeClaire: Phil. Mag., 1962, vol. 7, pp. 141–67.

    Google Scholar 

  3. Bulbul Chakraborty, Lars C. Smedskjaer, and Steven J. Rothman: J. Phys., 1984, vol. F 14, pp. 301–08.

    Article  Google Scholar 

  4. J.L. Deplante and A. Blandin: J. Phys. Chem. Solids, 1965, vol. 26, pp. 381–89.

    Article  CAS  Google Scholar 

  5. W.B. Alexander and L.M. Slifkin: Phys. Rev. B, 1970, vol. 1, pp. 3274–82.

    Article  Google Scholar 

  6. M.S. Anand and R.P. Agarwala: Phil. Mag., 1972, vol. 26, pp. 297–309.

    CAS  Google Scholar 

  7. S. Fujikawa and K. Hirano: Mater. Sci. Eng., 1977, vol. 27, pp. 25–33.

    Article  CAS  Google Scholar 

  8. Shin-Ichiro Fujikawa, Ken-Ichi Hirano, and Yoshiaki Fukushima: Metall. Trans. A, 1978, vol. 9A, pp. 1811–15.

    CAS  Google Scholar 

  9. S. Fujikawa and K. Hirano: Def. Diffus. Forum, 1989, vols. 66–69, pp. 447–52.

    Google Scholar 

  10. J.M. Brettell and A.J. Heeger: Phys. Rev., 1967, vol. 153, pp. 319–25.

    Article  Google Scholar 

  11. A.D. LeClaire: Phil. Mag., 1964, vol. 10, pp. 641–50.

    CAS  Google Scholar 

  12. J.H.O. Varley: Phil. Mag., 1954, vol. 45, pp. 887–916.

    CAS  Google Scholar 

  13. Daniel D. Pollack: Physical Properties of Materials for Engineers, 2nd ed., CRC Press, Boca Raton, FL, 1993, p. 251.

    Google Scholar 

  14. W. Hume-Rothery: Progr. Mater. Sci., 1968, vol. 13, pp. 229–65.

    Article  Google Scholar 

  15. CRC Handbook of Chemistry and Physics, 76th ed., David R. Lide ed., CRC Press, Boca Raton, FL, 1995–1996, pp. 10:207–10:208.

    Google Scholar 

  16. Charlotte E. Moore: Atomic Energy Levels as Derived from the Analysis of Optical Spectra, 1949, vol. 1, 1952, vol. 2, 1958, vol. 3, United States Department of Commerce, National Bureau of Standards, Washington, DC.

    Google Scholar 

  17. W.C. Martin, Romuald Zalubas and Lucy Hagan: Atomic Energy Levels—The Rare Earth Elements, National Bureau of Standards, Washington, DC, 1978.

    Google Scholar 

  18. Richard A. Flinn and Paul K. Trojan: Engineering Materials and Their Applications, 4th ed., Houghton-Mifflin Co., Boston, 1990, pp. 57–59.

    Google Scholar 

  19. N.F. Mott and H. Jones: The Theory of the Properties of Metals and Alloys, Clarendon Press, Oxford, United Kingdom, 1936, p. 140.

    Google Scholar 

  20. Daniel D. Pollack: Physical Properties of Materials for Engineers, 2nd ed., CRC Press, Boca Raton, FL, 1993, p. 137.

    Google Scholar 

  21. L.C.R. Alfred and N.H. March: Phys. Rev., 1956, vol. 103, pp. 877–88.

    Article  CAS  Google Scholar 

  22. Kwai Umeda and Shigehiro Kobayashi: J. Phys. Soc. Jpn., 1958, vol. 13, pp. 148–52.

    Article  CAS  Google Scholar 

  23. H. Onodera, H. Ohyama, H. Nakajima, H. Takatori, H. Fujii, T. Maeda, H. Takahashi, and S. Watakabe: Def. Diffus. Forum, 1993, vols. 95–98, pp. 729–34.

    Google Scholar 

  24. Smithells Metals Reference Book, 7th ed., E.A. Brandes and G.B. Brook, eds., Butterworth-Heinemann Ltd., Linacre House, Jordan Hill, Oxford, United Kingdom, 1992, pp. 13:9–13:40.

    Google Scholar 

  25. Hiroshi Oikawa: The Technology Reports of the Tohoku University, 1982, vol. 47 (2), pp. 215–24.

    CAS  Google Scholar 

  26. D. Bergner and Y. Khaddour: Def. Diffus. Forum, 1993, vols. 95–98, pp. 709–14.

    Google Scholar 

  27. D. Bergner, Y. Khaddour, and S. Lörx: Def. Diffus. Forum, 1989, vols. 66–69, pp. 1413–20.

    Google Scholar 

  28. S.M. Klotsman: Def. Diffus. Forum, 1989, vols. 66–69, pp. 85–102.

    Google Scholar 

  29. M. Beyeler and Y. Adda: J. Phys., 1968, vol. 29, pp. 345–52.

    CAS  Google Scholar 

  30. G. Rummel, T. Zumkley, G. Erdélyi, K. Freitag, G.M. Hood, and H. Mehrer: Def. Diffus. Forum, 1993, vols. 95–98, pp. 715–22.

    Google Scholar 

  31. Y. Yimamimo, T. Yasuda, H. Araki, and T. Yamane: Def. Diffus. Forum, 1989, vols. 66–69, pp. 1251–56.

    Google Scholar 

  32. W.G. Fricke: Scripta Metall., 1972, vol. 6, pp. 1139–44.

    Article  CAS  Google Scholar 

  33. A. Almazouzi, M.-P. Macht, V. Naundorf, G. Neumann, and V. Tölle: Def. Diffus. Forum, 1993, vols. 95–98, pp. 703–08.

    Google Scholar 

  34. G. Rummel and H. Mehrer: Def. Diffus. Forum, 1989, vols. 65–69, pp. 453–58.

    Google Scholar 

  35. Stanislaw Mrowec: Defects and Diffusion in Solids—An Introduction, Materials Science. Monograph 5, Elsevier Scientific Publishing Co., New York, NY, 1980, p. 395.

    Google Scholar 

  36. N.L. Peterson: J. Nucl. Mater., 1978, vols. 69–70, pp. 3–37 (calculated from Fig. 5).

    Article  Google Scholar 

  37. Alfred Seeger: J. Phys. F: Met. Phys., 1973, vol. 3, pp. 248–94.

    Article  CAS  Google Scholar 

  38. T. Minamino, H. Araki, T. Yamane, S. Ogino, S. Sagi, and Y. Miyamoto: Def. Diffus. Forum, 1993, vols. 95–98, pp. 685–96.

    Article  Google Scholar 

  39. N.L. Peterson: in Diffusion, ASM, Metals Park, OH, 1973, pp. 47–82.

    Google Scholar 

  40. W. Petry, A. Heiming, J. Trampenau, and G. Vogl: Def. Diffus. Forum, 1989, vols. 66–69, pp. 157–74.

    Google Scholar 

  41. J.R. Cahoon and Oleg D. Sherby: Metall. Trans. A, 1992, vol. 23A, pp. 2491–2500.

    CAS  Google Scholar 

  42. R.E. Pawel and T.S. Lundy: Acta. Metall., 1969, vol. 17, pp. 979–88.

    Article  CAS  Google Scholar 

  43. T.S. Lundy and J.F. Murdock: J. Appl. Phys., 1962, vol. 33, pp. 1671–73.

    Article  CAS  Google Scholar 

  44. F. Moya, G.E. Moya-Gontier, and F. Cabane-Brouty: Phys. Status Solidi, 1969, vol. 35, pp. 893–901.

    CAS  Google Scholar 

  45. H. Jones: The Theory of Brillouin Zones and Electronic States in Crystals, 2nd revised ed., North-Holland Publishing Company, Amsterdam, 1975, p. 5.

    Google Scholar 

  46. N.L. Peterson and S.J. Rothman: Phys. Rev. B, 1970, vol. 1, pp. 3264–73.

    Article  Google Scholar 

  47. J.E. Inglesfield: J. Phys. F: Met. Phys., 1972, vol. 2, pp. 878–92.

    Article  CAS  Google Scholar 

  48. T. Itami, M. Shimoji, J.A. Meijer, and W. van der Lugt: J. Phys. F: Met. Phys., 1988, vol. 18, pp. 2409–19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burachynsky, V., Cahoon, J.R. A theory for solute impurity diffusion, which considers engel-brewer valences, balancing the fermi energy levels of solvent and solute, and differences in zero point energy. Metall Mater Trans A 28, 563–582 (1997). https://doi.org/10.1007/s11661-997-0043-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0043-4

Keywords

Navigation