Skip to main content
Log in

Eutectic reaction and nonconstant material parameters in micro-macrosegregation modeling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Recently, the authors presented a general framework for the calculation of the local solidification path in micro-macrosegregation computations (Reference 1). For a volume element whose overall solute content is not necessarily constant, the problems of solute diffusion in the primary solid phase and of remelting were addressed. In handling the eutectic reaction, the mass fraction and the solute profile in the primary phase at the beginning of the eutectic reaction were assumed to be “frozen.” In the present study, this restriction has been relaxed, as the solute diffusion in the primary phase occurring during the eutectic reaction is taken into account as well as that taking place for temperatures between the liquidus and the eutectic. It is shown that there is a potential for dissolving the secondary phase, which is controlled by diffusion in the primary phase. Other extensions of the former modeling concept made in the present study are to allow different densities of the liquid and solid phases, nonlinear phase diagram characteristics, and a temperature and/or solute concentration-dependent solute diffusivity in the primary phase. Assuming that the variations of enthalpy and of average solute concentration are known from the solution of the macroscopic continuity equations, modeling examples focusing on the extensions of the former model have been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Combeau, J.-M. Drezet, A. Mo, and M. Rappaz: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2314–27.

    CAS  Google Scholar 

  2. H.D. Brody and M.C. Flemings: Trans. TMS-AIME, 1966, vol. 236, pp. 615–24.

    CAS  Google Scholar 

  3. T.W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12A, pp. 965–71.

    Google Scholar 

  4. I. Ohnaka: Trans. Iron Steel Inst. Jpn., 1986, vol. 26, pp. 1045–51.

    CAS  Google Scholar 

  5. S. Kobayashi: J. Cryst. Growth, 1988, vol. 88, pp. 87–96.

    Article  CAS  Google Scholar 

  6. L. Nastac and D.M. Stefanescu: Metall. Trans. A, 1993, vol. 24A, pp. 2107–18.

    CAS  Google Scholar 

  7. T.P. Battle: Int. Mater. Rev., 1992, vol. 37 (6), pp. 249–70.

    CAS  Google Scholar 

  8. A.J.W. Ogilvy and D.H. Kirkwood: Appl. Sci. Res., 1987, vol. 44, pp. 43–49.

    Article  CAS  Google Scholar 

  9. K.S. Yeum, L. Laxmanan, and D.R. Poirier: Metall. Trans. A, 1989, vol. 20A, pp. 2847–56.

    CAS  Google Scholar 

  10. S. Ganesan and D.R. Poirier: J. Cryst. Growth, 1989, vol. 97, pp. 851–959.

    Article  CAS  Google Scholar 

  11. T.P. Battle and R.D. Pehlke: Metall. Trans. B, 1990, vol. 21B, pp. 357–75.

    CAS  Google Scholar 

  12. Sinn-Wen Chen, Ying-Yu Chuang, Y. Austin Chang, and Men G. Chu: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 2837–48.

    CAS  Google Scholar 

  13. Sinn-Wen Chen and Y. Austin Chang: Metall. Mater. Trans. A, 1992, vol. 23A, pp. 1038–43.

    CAS  Google Scholar 

  14. W.D. Bennon and F.P. Incropera: Int. J. Heat Transfer Mass Transfer, 1987, vol. 30 (10), pp. 2161–70.

    Article  CAS  Google Scholar 

  15. W.D. Bennon and F.P. Incropera: Metall. Trans. B, 1987, vol. 18B, pp. 611–16.

    CAS  Google Scholar 

  16. V.R. Voller, A.D. Brent, and C. Prakash: Int. J. Heat Mass Transfer, 1989, vol. 32 (9), pp. 1719–32.

    Article  CAS  Google Scholar 

  17. S. Ganesan and D.R. Poirier: Metall. Trans. B, 1990, vol. 21B, pp. 173–81.

    CAS  Google Scholar 

  18. R. Viskanta: JSME Int. J., 1990, vol. 33 (3), pp. 409–23.

    CAS  Google Scholar 

  19. P.J. Prescott, F.P. Incropera, and W.D. Bennon: Int. J. Heat Mass Transfer, 1991, vol. 34 (9), pp. 2351–59.

    Article  CAS  Google Scholar 

  20. H. Combeau, F. Roch, I. Poitrault, J. Ch. Chevrier, and G. Lesoult: Numerical study of heat and mass transfer during solidification of steel ingots. In L.C. Wrobel, C.A. Brebbia, and A.J. Nowak, eds., Advanced computational methods in heat transfer: proceedings of the First International Conference on Advanced Computational Methods in Heat Transfer, pp. 77–89, Berlin, NY, 1990, Springer.

    Google Scholar 

  21. F. Roch, H. Combeau, J.C. Chevrier, and G. Lesoult: in Modelling of Casting, Welding and Advanced Solidification Processes, M. Rappaz, M.R. Ogzu, and K.W. Mahin, eds., TMS, Warrendale, PA, 1991, pp. 789–95.

    Google Scholar 

  22. Q.Z. Diao and H.L. Tsai: Metall. Trans. A, 1993, vol. 24A, pp. 963–73.

    CAS  Google Scholar 

  23. V.R. Voller and S. Sundarraj: Mater. Sci. Technol., 1993, vol. 9, pp. 474–81.

    CAS  Google Scholar 

  24. S. Sundarraj and V.R. Voller: Int. J. Heat and Mass Transfer, 1993, vol. 36, pp. 713–23.

    Article  CAS  Google Scholar 

  25. V.R. Voller and S. Sundarraj: Int. J. Heat and Mass Transfer, 1995, vol. 38 (6), pp. 1009–18.

    Article  CAS  Google Scholar 

  26. J. Ni and C. Beckermann: Metall. Trans. B, 1991, vol. 22B, pp. 349–61.

    CAS  Google Scholar 

  27. C.Y. Wang and C. Beckermann: Mater. Sci. Eng., 1993, vol. A171, pp. 199–211.

    CAS  Google Scholar 

  28. C.Y. Wang and C. Beckermann: Metall. Mater. Trans. B, 1993, vol. 24A, pp. 2787–2802.

    CAS  Google Scholar 

  29. A.V. Reddy and C. Beckermann: in Materials Processing in the Computer Age, V.R. Voller, S.P. Marsh, and N. El-Kaddah, eds., TMS-AIME, Warrendale, PA, 1995, pp. 89–102.

    Google Scholar 

  30. M.C. Schneider and C. Beckermann: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2373–88.

    CAS  Google Scholar 

  31. E.E. Emley: Int. Met. Rev., 1976, June, pp. 75–115.

  32. A. Mo: Int. J. Heat Mass Transfer, 1993, vol. 36 (18), pp. 4335–40.

    Article  CAS  Google Scholar 

  33. A. Mo, T.E. Johnsen, B.R. Henriksen, E.K. Jensen, and O.R. Myhr: in Light Metals, U. Mannweiler, ed., TMS-AIME, Warrendale, PA, 1994, pp. 889–96.

    Google Scholar 

  34. E. Haug, A. Mo, and H.J. Thevik: Int. J. Heat Mass Transfer, 1995, vol. 38 (9), pp. 1553–63.

    Article  CAS  Google Scholar 

  35. J.-M. Drezet, M. Rappaz, B. Carrupt, and M. Plata: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 821–30.

    CAS  Google Scholar 

  36. A. Mo: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 597–605.

    Google Scholar 

  37. H.J. Thevik and A. Mo: Int. J. Heat Mass Transfer, 1997, vol. 40 (9), pp. 2055–65.

    Article  CAS  Google Scholar 

  38. M.C. Flemings: Solidification Processing, McGraw-Hill, New York, NY, 1974, p. 331.

    Google Scholar 

  39. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling: Numerical Recipes—The Art of Scientific Computing (FORTRAN Version), Cambridge University Press, Cambridge, United Kingdom, 1992.

    Google Scholar 

  40. H.W.L. Phillips: Annoted Equilibrium Diagrams of Some Aluminum Alloy Systems, The Institute of Metals, London, 1959.

    Google Scholar 

  41. Y. Langsrud: in User Aspects of Phase Diagrams, F.H. Hayes, ed., The Institute of Metals, London, 1991, pp. 90–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Combeau, H., Mo, A. Eutectic reaction and nonconstant material parameters in micro-macrosegregation modeling. Metall Mater Trans A 28, 2705–2714 (1997). https://doi.org/10.1007/s11661-997-0027-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0027-4

Keywords

Navigation