Abstract
The study investigated the tensile properties of two low-carbon ferritic low-density steels at strain rates of 1 × 10−4 s−1, 1 × 10−3 s−1, and 1 × 10−2 s−1. These steels underwent cold and warm rolling as well as annealing. Various tensile properties were evaluated, including yield strength, ultimate tensile strength, strain hardening exponent, energy absorption up to 10 pct engineering strain, and strain rate sensitivity. The results showed that higher strain rates increased yield strength, ultimate tensile strength, and energy absorption in both steels. The strain hardening exponent was determined using the Hollomon and differential Crussard–Jaoul analysis. The electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) technique were employed to explain the strain hardening response in both steels. Both steels exhibited two distinct stages of deformation, describing their strain hardening behavior. The study observed a decrease in strain rate sensitivity with increasing true strain in both steels. Steel 1 displayed higher strain rate sensitivity than Steel 2, resulting in a delayed necking tendency and higher total elongation. Micrographs of fracture surfaces revealed the presence of quasi-cleavage facets and secondary cracks at strain rates of 1 × 10−3 s−1 and 1 × 10−2 s−1 in both steels. At a lower strain rate of 1 × 10−4 s−1, Steel 1 exhibited a dimple fracture due to its lower strength and higher total elongation, while Steel 2 displayed a quasi-cleavage fracture. The progression of voids in Steel 1 at a strain rate of 1 × 10−4 s−1 was characterized by establishing a relationship between actual thickness strain and the quantity of voids. This analysis provided insights into the steels void formation and growth mechanisms under specific conditions.
Similar content being viewed by others
Abbreviations
- BCC:
-
Body centered cubic
- RD:
-
Rolling direction
- TD:
-
Transverse direction
- ND:
-
Normal direction
- CR:
-
Cold rolling
- WR:
-
Warm rolling
- FRT:
-
Finish rolling temperature
- A:
-
Annealing
- YS:
-
Yield strength
- UTS:
-
Ultimate tensile strength
- UE:
-
Uniform elongation
- TE:
-
Total elongation
- YR:
-
Yield ratio
- PSE:
-
Product of UTS and UE
- YPE:
-
Yield point elongation
- HV:
-
Vickers Pyramid Number
- SRS:
-
Strain rate sensitivity
- DP:
-
Dual-phase
- \(\sigma_{t}\) :
-
True stress
- \(\varepsilon_{t}\) :
-
True strain
- \(n_{H}\) :
-
Hollomon strain hardening exponent
- n L :
-
Ludwik strain hardening exponent
- K H :
-
Hollomon material strength coefficient
- \(K_{L}\) :
-
Ludwik material strength coefficient
- \(U_{T}\) :
-
Total energy absorbed up to fracture
- \(\sigma_{u}\) :
-
Ultimate tensile strength
- \(\varepsilon_{T}\) :
-
Engineering strain up to fracture
- \(C_{p}\) :
-
Material constant
- \(\dot{\varepsilon }_{t}\) :
-
True strain rate
- \(m\) :
-
Strain rate sensitivity
References
G. Frommeyer, E.J. Drewes, and B. Engl: Rev. Métallurgie, 2000, vol. 97, pp. 1245–53.
S.Y. Han, S.Y. Shin, B.J. Lee, S. Lee, N.J. Kim, and J.H. Kwak: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 235–47.
R.G. Baligidad, U. Prakash, A. Radhakrishna, V. Ramakrishna Rao, P.K. Rao, and N.B. Ballal: Scr. Mater., 1997, vol. 36, pp. 667–71.
I. Gutierrez-Urrutia: ISIJ Int., 2021, vol. 61, pp. 16–25.
V.K. Singh, R. Rana, S.B. Singh, and A. Kundu: ISIJ Int., 2023, vol. 63, pp. 930–40.
V.V. SatyaPrasad, S. Khaple, and R.G. Baligidad: Jom, 2014, vol. 66, pp. 1785–93.
U. Brüx, G. Frommeyer, and J. Jimenez: Steel Res., 2002, vol. 73, pp. 543–48.
H. Helms and U.L. Lambrecht: Int. J. Life Cycle Assess., 2007, vol. 12, pp. 58–64.
R. Rana, C. Lahaye, and R.K. Ray: Jom, 2014, vol. 66, pp. 1734–46.
H. Kim, D.W. Suh, and N.J. Kim: Sci. Technol. Adv. Mater., 2013, vol. 14, p. 11.
S. Khaple, B.R. Golla, and V.V.S. Prasad: Def. Technol., 2022, vol. 26, pp. 1–22.
A. Kundu and P.C. Chakraborti: J. Mater. Sci., 2010, vol. 45, pp. 5482–89.
G. Mirone, R. Barbagallo, M.M. Tedesco, D. De Caro, and M. Ferrea: Metals, 2022, vol. 12, p. 960.
W. Wang, Y. Ma, M. Yang, P. Jiang, F. Yuan, and X. Wu: Metals, 2018, vol. 8, p. 11.
P. Rawat, U. Prakash, and V.V.S. Prasad: J. Mater. Eng. Perform., 2021, vol. 30, pp. 6297–6308.
K.M. Chang and J.W. Morris: Metall. Trans. A, 1979, vol. 10, pp. 1377–87.
S. Khaple, V.V. SatyaPrasad, and B.R. Golla: Trans. Indian Inst. Met., 2018, vol. 71, pp. 2713–16.
R. Chen, P. Chen, and X.W. Li: Mater. Sci. Eng. A, 2023, vol. 862, 144475.
D. Han, H. Ding, D. Liu, B. Rolfe, and H. Beladi: Mater. Sci. Eng. A, 2020, vol. 785, 139286.
S. Khaple, R.G. Baligidad, M. Sankar, and V.V. Satya Prasad: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7452–56.
J. Herrmann, G. Inden, and G. Sauthoff: Acta Mater., 2003, vol. 51, pp. 3233–42.
C. Castan, F. Montheillet, and A. Perlade: Scr. Mater., 2013, vol. 68, pp. 360–64.
A. Zargaran, H.S. Kim, J.H. Kwak, and N.J. Kim: Scr. Mater., 2014, vol. 89, pp. 37–40.
D.G. Morris, M.A. Muñoz-Morris, and L.M. Requejo: Mater. Sci. Eng. A, 2007, vol. 460–461, pp. 163–73.
L. Falat, A. Schneider, G. Sauthoff, and G. Frommeyer: Intermetallics, 2005, vol. 13, pp. 1256–62.
S. Mohapatra, S. Kumar, S. Das, and K. Das: Mater. Lett., 2022, vol. 330, 133243.
J.T. Benzing, W.E. Luecke, S.P. Mates, D. Ponge, D. Raabe, and J.E. Wittig: Mater. Sci. Eng. A, 2021, vol. 803, 140469.
J. Du, P. Chen, X. Guan, Q. Peng, C. Lin, and X. Li: Metals, 2022, vol. 12, p. 1374.
A. Mohamadizadeh, A. Zarei-Hanzaki, H.R. Abedi, S. Mehtonen, and D. Porter: Mater. Charact., 2015, vol. 107, pp. 293–301.
H.R. Abedi, A. Zarei Hanzaki, K.L. Ou, and C.H. Yu: Mater. Des., 2017, vol. 116, pp. 472–80.
N. Zhou, R. Song, W. Huo, and Z. Zhang: Steel Res. Int., 2021, vol. 92, pp. 1–9.
Y.G. Yang, W.Z. Mu, X.Q. Li, H.T. Jiang, M. Wang, Z.L. Mi, and X.P. Mao: J. Iron Steel Res. Int., 2022, vol. 29, pp. 316–26.
V. Tarigopula, O.S. Hopperstad, M. Langseth, A.H. Clausen, and F. Hild: Int. J. Solids Struct., 2007, vol. 45, pp. 601–19.
H. Huh, S.B. Kim, J.H. Song, and J.H. Lim: Int. J. Mech. Sci., 2008, vol. 50, pp. 918–31.
S. Xu, D. Ruan, J.H. Beynon, and Y. Rong: Mater. Sci. Eng. A, 2013, vol. 573, pp. 132–40.
D.Q. Zou, S.H. Li, and J. He: Mater. Sci. Eng. A, 2016, vol. 680, pp. 54–63.
K. Li, B. Yu, R.D.K. Misra, G. Han, Y.T. Tsai, C.W. Shao, C.J. Shang, J.R. Yang, and Z.F. Zhang: Mater. Sci. Eng. A, 2019, vol. 742, pp. 116–23.
J.T. Benzing, W.A. Poling, D.T. Pierce, J. Bentley, K.O. Findley, D. Raabe, and J.E. Wittig: Mater. Sci. Eng. A, 2018, vol. 711, pp. 78–92.
Y. Jiang, T. Zou, M. Liu, Y. Cai, Q. Wang, Y. Wang, Y. Pei, H. Zhang, Y. Liu, and Q. Wang: J. Iron. Steel Res. Int., 2022, vol. 29, pp. 316–26.
Y.H. Liu, Y.Q. Ning, X.M. Yang, Z.K. Yao, and H.Z. Guo: Mater. Des., 2016, vol. 95, pp. 669–76.
H. Pan, X. Li, S. Zhang, W. Zhou, Z. Wu, and L. Liu: Mater. Sci. Eng. A, 2023, vol. 879, 145241.
P.J. Szabó, D.P. Field, B. Jóni, J. Horky, and T. Ungár: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1948–57.
M. Najafi, H. Mirzadeh, and M. Alibeyki: J. Mater. Eng. Perform., 2019, vol. 28, pp. 5409–14.
R. Saha and R.K. Ray: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1882–90.
H. Bhadeshia and R. Honeycombe: Butterworth-Heinemann, 2017.
B.K. Choudhary, E.I. Samuel, G. Sainath, J. Christopher, and M.D. Mathew: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4979–92.
S. Sevsek, C. Haase, and W. Bleck: Metals, 2019, vol. 18, p. 344.
H.J. Kleemola and M.A. Nieminen: Met. Trans., 1974, vol. 5, pp. 1863–66.
George Ellwood Dieter: Mechanical Metallurgy, 2nd ed. McGraw-Hill Book Co., London, 1988, pp. 103–272.
R. Rana: High-Performance Ferrous Alloys, Springer, New York, 2021, pp. 240–42.
H.K. Yang, Z.J. Zhang, Y.Z. Tian, and Z.F. Zhang: Mater. Sci. Eng. A, 2017, vol. 690, pp. 146–57.
P. Larour, A. Bäumer, K. Dahmen, and W. Bleck: Steel Res. Int., 2013, vol. 84, pp. 426–42.
J. Speer, R. Rana, D. Matlock, A. Glover, G. Thomas, and E. De Moor: Metals, 2019, vol. 9, pp. 1–9. https://doi.org/10.3390/met9070771.
A.H. Cottrell and B.A. Bilby: Proc. Phys. Soc. Sect. A, 1949, vol. 62, pp. 49–62.
Y. Chen, Z. Wu, G. Wu, N. Wang, Q. Zhao, and J. Luo: Mater. Sci. Eng. A, 2021, vol. 802, 140657.
S. Pramanik and S. Suwas: Jom, 2014, vol. 66(9), pp. 1868–76.
C. Edwards, D. Phillips, and H. Jones: J. Iron Steel Inst., 1940, vol. 142, pp. 199–236.
S.M. Hasan, A. Mandal, S.B. Singh, and D. Chakrabarti: Mater. Sci. Eng. A, 2019, vol. 751, pp. 142–53.
M. Umemoto, K. Tsuchiya, Z.G. Liu, and S. Sugimoto: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1785–94.
S. Sankaran, S. Sangal, and K.A. Padmanabhan: Mater. Sci. Technol., 2005, vol. 21, pp. 1152–60.
J.T. Benzing, A. Kwiatkowski da Silva, L. Morsdorf, J. Bentley, D. Ponge, A. Dutta, J. Han, J.R. McBride, B. Van Leer, B. Gault, D. Raabe, and J.E. Wittig: Acta Mater., 2019, vol. 166, pp. 512–30.
A. Kundu, D.P. Field, and P.C. Chakraborti: Mater. Sci. Eng. A, 2020, vol. 773, p. 138854.
A.H. Jahanara, Y. Mazaheri, and M. Sheikhi: Mater. Sci. Eng. A, 2019, vol. 764, p. 138206.
S. Sinha, A. Pukenas, A. Ghosh, A. Singh, W. Skrotzki, and N.P. Gurao: Philos. Mag., 2017, vol. 97, pp. 775–97.
I.D. Choi, D.M. Bruce, S.J. Kim, C.G. Lee, D.K. Matlock, and J.G. Speer: vol. 42, 2002, pp. 1483–89.
C.A.R. Saleh, M.K. Jain, and D.S. Wilkinson: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3117–27.
H. Choi, S. Lee, J. Lee, F. Barlat, and B.C. De Cooman: Mater. Sci. Eng. A, 2017, vol. 687, pp. 200–10.
Acknowledgments
The financial support of the work has been received from Science and Engineering Research Board, Department of Science and technology, Government of India (file no.: CRG/2020/001511) under core research grant. One of the authors (AK) is thankful to Professor P. C. Chakraborti, Metallurgical and Material Engineering Department, Jadavpur University, Kolkata-700032, India, for useful discussion and for the provision of the research facilities at Metallurgical and Material Engineering Department, Jadavpur University, Kolkata-700032, India and Centre of Excellence in Phase Transformation and Product Characterisation, Jadavpur University, Kolkata-700032, India, for the Thermo-Calc facility. The authors would also like to thank Central Research Facility, Department of Metallurgical and Materials Engineering and Steel Technology Centre of Indian Institute of Technology, Kharagpur for providing research facility.
Author information
Authors and Affiliations
Contributions
Vinit Kumar Singh: Conceptualization, Methodology, Software Validation, Formal analysis, Investigation, Data curation, Writing—original draft, Visualization. Radhakanta Rana: Formal analysis, Investigation, Resources, Review & editing, Data curation. Shiv Brat Singh: Investigation, Visualization, Supervision, Review & editing, Data curation, Project administration, Funding acquisition. Amrita Kundu: Conceptualisation, Methodology, Validation, Formal analysis, Writing—original draft, Review & editing, Supervision, Project administration, Funding acquisition.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that no financial conflicts of interest influenced the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Singh, V.K., Rana, R., Singh, S.B. et al. Strain Rate-Dependent Tensile and Fracture Properties of Low-Carbon Ferritic Low-Density Steels. Metall Mater Trans A 55, 2990–3010 (2024). https://doi.org/10.1007/s11661-024-07453-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-024-07453-1