Skip to main content

Advertisement

Log in

Ultrastrong Low-Alloy Steel with Good Ductility via Multiple Strengthening, Suppressed Carbides and Reversed Austenite in Quenching and Tempering

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Two low-alloy quenched-tempered steels (#1 steel and #2 steel) are designed and comparatively studied to achieve ultrahigh yield strength (above 2000 MPa) at relatively low material and process costs. #1 steel and #2 steel have chemical compositions (wt pct) of 0.62 C, 1.62 Si, 0.78 Mn, 1.05 Cr, and 0.18 V and 0.55 C, 1.74 Si, 0.67 Mn, 1.12 Cr, 0.14 V, 0.21 Ni, and 0.20 Mo, respectively. The two steels are heated to 950 °C for 30 minutes, oil quenched, tempered at 240 to 440 °C for 90 minutes and water cooled. Under the same heat treatment parameters, the two steels have basically the same strength (tensile strength 2100 to 2400 MPa; yield strength 1950 to 2100 MPa). Interestingly, as the tempering temperature decreases from 440 °C to 240 °C, the elongation of #1 steel decreases from 10.7 to 1.8 pct, but that of #2 steel is quite stable at ~ 10 pct. #2 Steel has a high tempering resistance, and χ-carbide precipitation of #2 steel is significantly suppressed during tempering. Moreover, when tempering at 240 to 400 °C, the austenite volume fraction of #2 steel is higher than that in the quenched state. The reduction in carbide precipitation contributes to carbon segregation at martensite lath boundaries and other locations, and it may promote the formation of reversed austenite during tempering, which is revealed by 3D atom probe tomography (APT). The excellent mechanical properties of #2 steel are mainly related to the reversed austenite, the fine-grained microstructure of the martensite matrix and the reduced carbides acting as crack initiation sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H.J. Kong, C. Xu, C.C. Bu, C. Da, J.H. Luan, Z.B. Jiao, G. Chen, and C.T. Liu: Acta Mater., 1993, vol. 172, pp. 150–60.

    Article  Google Scholar 

  2. Y.H. Gao, S.Z. Liu, X.B. Hu, Q.Q. Ren, Y. Li, V.P. Dravid, and C.X. Wang: Mater. Sci. Eng. A, 2019, vol. 759, pp. 298–302.

    Article  CAS  Google Scholar 

  3. P.M. Machmeier, C.D. Little, M.H. Horowitz, and R.P. Oates: Met. Technol., 1979, vol. 6, pp. 291–96.

    Article  CAS  Google Scholar 

  4. R. Ayer and P.M. Machmeier: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2510–17.

    Article  CAS  Google Scholar 

  5. D. Raabe, D. Ponge, O. Dmitrieva, and B. Sander: Scripta Mater., 2009, vol. 60, pp. 1141–44.

    Article  CAS  Google Scholar 

  6. S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M. Chen, Y. Wang, and Z. Lu: Nature, 2017, vol. 544, pp. 460–64.

    Article  CAS  PubMed  Google Scholar 

  7. M. Niu, G. Zhou, W. Wang, M.B. Shahzad, Y. Shan, and K. Yang: Acta Mater., 2019, vol. 179, pp. 296–307.

    Article  CAS  Google Scholar 

  8. T. Liu, Z. Cao, H. Wang, G. Wu, J. Jin, and W. Cao: Scripta Mater., 2020, vol. 178, pp. 285–89.

    Article  CAS  Google Scholar 

  9. H. Zhang, M. Sun, Y. Liu, D. Ma, B. Xu, M. Huang, D. Li, and Y. Li: Acta Mater., 2021, vol. 211, p. 116878.

    Article  CAS  Google Scholar 

  10. B.B. He, L. Liu, and M.X. Huang: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3167–72.

    Article  Google Scholar 

  11. W.W. Sun, Y.X. Wu, S.C. Yang, and C.R. Hutchinson: Scripta Mater., 2018, vol. 146, pp. 60–63.

    Article  CAS  Google Scholar 

  12. B. He, B. Hu, H. Yen, G. Cheng, Z. Wang, H. Luo, and M. Huang: Science, 2017, vol. 357, pp. 1029–32.

    Article  CAS  PubMed  Google Scholar 

  13. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, and P. Brown: Mater. Sci. Technol., 2013, vol. 18, pp. 279–84.

    Article  Google Scholar 

  14. F.G. Caballero, C. Garcia-Mateo, and M.K. Miller: JOM, 2014, vol. 66, pp. 747–55.

    Article  CAS  Google Scholar 

  15. B. Jiang, M. Wu, M. Zhang, F. Zhao, Z. Zhao, and Y. Liu: Mater. Sci. Eng. A, 2017, vol. 707, pp. 306–14.

    Article  CAS  Google Scholar 

  16. M. Ou, C. Yang, J. Zhu, Q. Xia, and H. Qiao: J. Alloy Compd., 2017, vol. 697, pp. 43–54.

    Article  Google Scholar 

  17. L. Xu, L. Chen, and W. Sun: Vacuum, 2018, vol. 154, pp. 322–32.

    Article  CAS  Google Scholar 

  18. S.H. Kim, K.H. Kim, C.M. Bae, J.S. Lee, and D.W. Suh: Met. Mater. Int., 2018, vol. 24, pp. 693–701.

    Article  CAS  Google Scholar 

  19. J. Zhu, Z. Zhang, and J. Xie: Mater. Sci. Eng. A, 2019, vol. 752, pp. 101–14.

    Article  CAS  Google Scholar 

  20. J. Zhu, G.T. Lin, Z.H. Zhang, and J.X. Xie: Mater. Sci. Eng. A, 2020, vol. 797, p. 140139.

    Article  CAS  Google Scholar 

  21. J. Zhang, Z. Dai, L. Zeng, X. Zuo, J. Wan, Y. Rong, N. Chen, J. Lu, and H. Chen: Acta Mater., 2021, vol. 217, p. 117176.

    Article  CAS  Google Scholar 

  22. P. Wang, N. Xiao, S. Lu, D. Li, and Y. Li: Mater. Sci. Eng. A, 2013, vol. 586, pp. 292–300.

    Article  CAS  Google Scholar 

  23. Y.Y. Song, X.Y. Li, L.J. Rong, Y.Y. Li, and T. Nagai: Mater. Chem. Phys., 2014, vol. 143, pp. 728–34.

    Article  CAS  Google Scholar 

  24. J. Hu, L.X. Du, G.S. Sun, H. Xie, and R.D.K. Misra: Scripta Mater., 2015, vol. 104, pp. 87–90.

    Article  CAS  Google Scholar 

  25. D. Ye, S. Li, J. Li, W. Jiang, J. Su, and K. Zhao: Mater. Charact., 2015, vol. 109, pp. 100–06.

    Article  CAS  Google Scholar 

  26. S. Yan, X. Liu, T. Liang, and Y. Zhao: Mater. Sci. Eng. A, 2018, vol. 712, pp. 332–40.

    Article  CAS  Google Scholar 

  27. Y.Y. Song, X.Y. Li, L.J. Rong, D.H. Ping, F.X. Yin, and Y.Y. Li: Mater. Lett., 2010, vol. 64, pp. 1411–14.

    Article  CAS  Google Scholar 

  28. P. Song, W. Liu, C. Zhang, L. Liu, and Z. Yang: ISIJ Int., 2016, vol. 56, pp. 148–53.

    Article  CAS  Google Scholar 

  29. A.K. da Silva, G. Inden, A. Kumar, D. Ponge, B. Gault, and D. Raabe: Acta Mater., 2018, vol. 147, pp. 165–75.

    Article  Google Scholar 

  30. Y. Xu, W. Li, H. Du, H. Jiao, B. Liu, Y. Wu, W. Ding, Y. Luo, Y. Nie, N. Mine, W. Liu, and X. Jin: Acta Mater., 2021, vol. 214, p. 116986.

    Article  CAS  Google Scholar 

  31. C. Wang, H. Fu, L. Jiang, D. Xue, and J. Xie: NPJ Comput. Mater., 2019, vol. 5, p. 89.

    Article  Google Scholar 

  32. Y. Zhang, X. Gong, and H. Zhao: J. Tianjin Inst. Technol., 2003, vol. 19, pp. 69–72.

    CAS  Google Scholar 

  33. B. Zhang, F. Wang, H. Wu, and C. Li: Heat Treat. Met., 2011, vol. 36, pp. 29–33.

    Google Scholar 

  34. Y. Li, A. Nie, X. Wu, and H. Zhao: Spec. Steel, 2006, vol. 27, pp. 61–62.

    Google Scholar 

  35. H. Cai, S. Wang, W. Peng, X. Chang, and J. Ma: Heat Treat. Met., 2017, vol. 42, pp. 185–89.

    CAS  Google Scholar 

  36. Q. Li, G. Gao, L. Zhou, E. Yang, F. Chen, and J. Chen: Spec. Steel, 2012, vol. 33, pp. 49–50.

    Google Scholar 

  37. J. Zhu, M. Ou, Y. Jiang, and X. Xu: J. Mater. Sci. Eng., 2016, vol. 34, pp. 316–20.

    CAS  Google Scholar 

  38. Z. Zhang, F. Zhao, and W. Tan: Heat Treat. Met., 2014, vol. 39, pp. 104–07.

    Google Scholar 

  39. Q. Wu, L. Guo, and M. Guan: Phys. Exam. Test., 2018, vol. 36, pp. 13–16.

    Google Scholar 

  40. H. Wu, F. Wang, C. Li, and H. Cheng: Trans. Mater. Heat Treat., 2011, vol. 32, pp. 35–41.

    CAS  Google Scholar 

  41. K.M. Youssef, R.O. Scattergood, K.L. Murty, and C.C. Koch: Scripta Mater., 2006, vol. 54, pp. 251–56.

    Article  CAS  Google Scholar 

  42. Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, and Y.T. Zhu: Acta Mater., 2004, vol. 52, pp. 4589–99.

    Article  CAS  Google Scholar 

  43. J. Zhu, J.X. Xie, Z.H. Zhang, and H.Y. Huang: Steel Res. Int., 2018, vol. 89, p. 1800044.

    Article  Google Scholar 

  44. M.J. Duggin and L.J.E. Hofer: Nature, 1966, vol. 212, p. 248.

    Article  CAS  Google Scholar 

  45. M.J. Duggin: Trans. Met. Soc. AIME, 1968, vol. 242, p. 1091.

    CAS  Google Scholar 

  46. Y. Ohmori and S. Sugisawa: Trans. Jpn Inst. Met., 1971, vol. 12, pp. 170–78.

    Article  CAS  Google Scholar 

  47. Y. Ohmori: Trans. Jpn Inst. Met., 1972, vol. 13, pp. 119–27.

    Article  CAS  Google Scholar 

  48. A.J. Clarke, M.K. Miller, R.D. Field, D.R. Coughlin, P.J. Gibbs, K.D. Clarke, D.J. Alexander, K.A. Powers, P.A. Papin, and G. Krauss: Acta Mater., 2014, vol. 77, pp. 17–27.

    Article  CAS  Google Scholar 

  49. A.J. Clarke, J. Klemm-toole, K.D. Clarke, D.R. Coughlin, D.T. Pierce, V.K. Euser, J.D. Poplawsky, B. Clausen, D. Brown, J. Almer, P.J. Gibbs, D.J. Alexander, R.D. Field, D.L. Williamson, J.G. Speer, and G. Krauss: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 4984–5005.

    Article  Google Scholar 

  50. E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo: Acta Mater., 2015, vol. 98, pp. 81–93.

    Article  CAS  Google Scholar 

  51. H. Luo, X. Wang, Z. Liu, and Z. Yang: J. Mater. Sci. Technol., 2020, vol. 51, pp. 130–36.

    Article  CAS  Google Scholar 

  52. S. Morito, H. Yoshida, T. Maki, and X. Huang: Mater. Sci. Eng. A, 2006, vol. 438, pp. 237–40.

    Article  Google Scholar 

  53. J. Daigne, M. Guttman, and J.P. Naylor: Mater. Sci. Eng., 1982, vol. 56, pp. 1–10.

    Article  CAS  Google Scholar 

  54. A. Shibata, T. Nagoshi, M. Sone, S. Morito, and Y. Higo: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7538–44.

    Article  Google Scholar 

  55. U.F. Kocks and H. Mecking: Prog. Mater. Sci., 2003, vol. 48, pp. 171–273.

    Article  CAS  Google Scholar 

  56. B.C. De Cooman: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 285–303.

    Article  Google Scholar 

  57. K. Zhu, C. Mager, and M. Huang: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1475–86.

    Article  CAS  Google Scholar 

  58. G. Gao, B. Gao, X. Gui, J. Hu, J. He, Z. Tan, and B. Bai: Mater. Sci. Eng. A, 2019, vol. 753, pp. 1–10.

    Article  CAS  Google Scholar 

  59. E.J. Seo, L. Cho, and B.C. De Cooman: Acta Mater., 2016, vol. 107, pp. 354–65.

    Article  CAS  Google Scholar 

  60. E.J. Seo, L. Cho, Y. Estrin, and B.C. De Cooman: Acta Mater., 2016, vol. 113, pp. 124–39.

    Article  CAS  Google Scholar 

  61. K. Kim and S.J. Lee: Mater. Sci. Eng. A, 2017, vol. 698, pp. 183–90.

    Article  CAS  Google Scholar 

  62. G.A. Thomas and J.G. Speer: Mater. Sci. Technol., 2014, vol. 30, pp. 998–1007.

    Article  CAS  Google Scholar 

  63. G.A. Thomas, F. Danoix, J.G. Speer, S.W. Thompson, and F. Cuvilly: ISIJ Int., 2014, vol. 54, pp. 2900–06.

    Article  CAS  Google Scholar 

  64. N. Zhong, X. Wang, Y. Rong, and L. Wang: J. Mater. Sci. Technol., 2006, vol. 22, pp. 751–54.

    CAS  Google Scholar 

  65. H.Y. Li, X.W. Lu, W.J. Li, and X.J. Jin: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1284–1300.

    Article  CAS  Google Scholar 

  66. D. Kim, S.-J. Lee, and B.C. De Cooman: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4967–83.

    Article  Google Scholar 

  67. X. Tan, Y. Xu, X. Yang, and D. Wu: Mater. Sci. Eng. A, 2014, vol. 589, pp. 101–11.

    Article  CAS  Google Scholar 

  68. D. Kim, J.G. Speer, and B.C. De Cooman: Metall. Mater. Trans. A, 2010, vol. 42A, pp. 1575–85.

    Google Scholar 

  69. D. De Knijf, M.J. Santofimia, H. Shi, V. Bliznuk, C. Föjer, R. Petrov, and W. Xu: Acta Mater., 2015, vol. 90, pp. 161–68.

    Article  Google Scholar 

  70. J.G. Speer, R.E. Hackenberg, B.C. De Cooman, and D.K. Matlock: Philos. Mag. Lett., 2007, vol. 7, pp. 379–82.

    Article  Google Scholar 

  71. X. Long, F. Zhang, Z. Yang, and B. Lv: Mater. Sci. Eng. A, 2018, vol. 715, pp. 10–16.

    Article  CAS  Google Scholar 

  72. Y.K. Kim, K.S. Kim, Y.B. Song, J.H. Park, and K.A. Lee: J. Mater. Sci. Technol., 2021, vol. 66, pp. 36–45.

    Article  CAS  Google Scholar 

  73. C. García-Mateo and F.G. Caballero: Mater. Trans., 2005, vol. 46, pp. 1839–46.

    Article  Google Scholar 

  74. O. Bouaziz, D. Barbier, P. Cugy, and G. Petigand: Adv. Eng. Mater., 2012, vol. 14, pp. 49–51.

    Article  CAS  Google Scholar 

  75. H. Lee, M.C. Jo, S.S. Sohn, A. Zargaran, J.H. Ryu, N.J. Kim, and S. Lee: Acta Mater., 2018, vol. 147, pp. 247–60.

    Article  CAS  Google Scholar 

  76. K.T. Tharian, D. Sivakumar, R. Ganesan, P. Balakrishnan, and P.P. Sinha: Mater. Sci. Technol., 1991, vol. 7, pp. 1082–88.

    Article  CAS  Google Scholar 

  77. J.Z. Zhang, Y.G. Cui, X.W. Zuo, J. Wan, Y. Rong, N. Chen, and J. Lu: Sci. Bull., 2021, vol. 66, pp. 1058–62.

    Article  CAS  Google Scholar 

  78. J.M. Pardal, S.S.M. Tavares, V.F. Terra, M.R. Da Silva, and D.R. Dos Santos: J. Alloy Compd., 2005, vol. 393, pp. 109–13.

    Article  CAS  Google Scholar 

  79. U.K. Viswanathan, R. Kishore, and M.K. Asundi: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 757–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation (Grant Numbers 52101118 and 51925401) and Young Elite Scientists Sponsorship Program by CAST (Grant Number 2022QNRC001)

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fan Zhao or Zhihao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Zhang, S., Cheng, T. et al. Ultrastrong Low-Alloy Steel with Good Ductility via Multiple Strengthening, Suppressed Carbides and Reversed Austenite in Quenching and Tempering. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07405-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07405-9

Navigation