Skip to main content

Advertisement

Log in

Mg–Ca Surgical Wires Degradation in Animal Serum

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The degradation of Mg–Ca alloys designed for veterinary applications (hard tissue bonding) obtained by the hot and cold plastic deformation process was investigated. Weight loss and electrochemical tests were carried out on wires with various contents of Ca (0.7, 0.9, and 1.2 pct) in an animal serum, an environment that most closely resembles the conditions of a living organism. The results showed that corrosion resistance increases slightly with an increase in the Ca content. This fact is probably related to the lower solubility of calcium compounds which, deposited on the wire surface, block the corrosion processes. The surface coverage with corrosion products was confirmed by SEM analysis. XPS and FTIR measurements showed that the surface layer consists mainly of sparingly soluble Ca and Mg compounds. SEM micrographs of the cross-section of the wires indicated a slightly higher layer thickness for alloys with a higher Ca content, which is consistent with the results of electrochemical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Asri, W.S.W. Harun, M. Samykano, N.A.C. Lah, S.A.C. Ghani, F. Tarlochan, and M.R. Raza: Mater. Sci. Eng. C, 2017, vol. 77, pp. 1261–74.

    Article  CAS  Google Scholar 

  2. M. Balazic, J. Kopac, M.J. Jackson, and W. Ahmed: Int. J. Nano Biomater., 2007, vol. 1, pp. 3–4.

    Article  CAS  Google Scholar 

  3. J.P. Collier, V.A. Surprenant, R.E. Jensen, and M.B. Mayor: Clin. Orthop. Relat., 1991, vol. 271, pp. 305–312.

    Article  Google Scholar 

  4. N. Eliaz: Materials, 2019, vol. 12, p. 407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. N.S. Manam, W.S.W. Harun, D.N.A. Shri, S.A.C. Ghani, T. Kurniawan, M.H. Ismail, and M.H.I. Ibrahim: J. Alloys Compd., 2017, vol. 701, pp. 698–715.

    Article  CAS  Google Scholar 

  6. A.T. Sidambe: Materials, 2014, vol. 7, pp. 8168–88.

    Article  PubMed  PubMed Central  Google Scholar 

  7. W. Siswomihardjo, M.K. Herliansyah, and N. Dinar: in 2017 5th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), 2017, pp. 10–12.

  8. T.M. Muffly, A.P. Tizzano, and M.D. Walters: J. R. Soc. Med., 2011, vol. 104, pp. 107–112.

    Article  PubMed  PubMed Central  Google Scholar 

  9. L.E. Claes: Clin. Mater., 1992, vol. 10, pp. 41–46.

    Article  CAS  PubMed  Google Scholar 

  10. E.C. Huse: Chicago Med. J. Exam., 1878, vol. 37, pp. 171–72.

    Google Scholar 

  11. W. Jahnen-Dechent and M. Ketteler: Clin. Kidney J., 2012, vol. 5, pp. i3–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M.E. Maguire and J.A. Cowan: Biometals, 2002, vol. 15, pp. 203–10.

    Article  CAS  PubMed  Google Scholar 

  13. Magnesium (National Institutes of Health): https://ods.od.nih.gov/factsheets/Magnesium-Consumer/, accessed 8 August 2023.

  14. K. Schümann, T. Ettle, B. Szegner, B. Elsenhans, and N.W. Solomons: J. Trace Elem. Med. Biol., 2007, vol. 21, pp. 147–68.

    Article  PubMed  Google Scholar 

  15. J.O. Nriagu: Encyclopedia of Environmental Health, 2nd ed. Elsevier, Amsterdam, 2019.

    Google Scholar 

  16. M. Jamesh, S. Kumar, and T.S.N. Sankara Narayanan: Corros. Sci., 2011, vol. 53, pp. 645–54.

    Article  CAS  Google Scholar 

  17. Z. Li, X.N. Gu, S. Lou, and Y.F. Zheng: Biomaterials, 2008, vol. 29, pp. 1329–44.

    Article  CAS  PubMed  Google Scholar 

  18. Z.Q. Zhang, Y.F. Zheng, Y. Ni, Z. Liu, J. Chen, and X. Liang: J. Phys. Chem. B, 2006, vol. 110, pp. 12969–73.

    Article  CAS  PubMed  Google Scholar 

  19. A. Ferreira, C. Oliveira, and F. Rocha: J. Cryst. Growth, 2003, vol. 252, pp. 599–611.

    Article  CAS  Google Scholar 

  20. M.M. Tlili, M. Benamor, C. Gabrielli, H. Perrot, and B. Tribollet: J. Electrochem. Soc., 2003, vol. 150, p. C765.

    Article  CAS  Google Scholar 

  21. N.T. Kirkland, N. Birbilis, and M.P. Staiger: Acta Biomater., 2012, vol. 8, pp. 925–36.

    Article  CAS  PubMed  Google Scholar 

  22. J. Gonzalez, R.Q. Hou, E.P.S. Nidadavolu, R. Willumeit-Römer, and F. Feyerabend: Bioact. Mater., 2018, vol. 3, pp. 174–85.

    PubMed  PubMed Central  Google Scholar 

  23. Z. Wu, Y. Du, H. Xue, Y. Wu, and B. Zhou: Neurobiol. Aging, 2012, vol. 33, p. 199.e1–99.e12.

    Article  CAS  PubMed  Google Scholar 

  24. W. Fan, H.Q. Lou, Y.L. Gong, M.Y. Liu, Z.Q. Wang, J.L. Yang, and S.J. Zheng: Plant Cell Environ., 2014, vol. 37, pp. 1586–97.

    Article  CAS  PubMed  Google Scholar 

  25. W. Yang, P. Zhang, J. Liu, and Y. Xue: J. Rare Earths, 2006, vol. 24, pp. 369–73.

    Article  Google Scholar 

  26. S. Minisola, J. Pepe, S. Piemonte, and C. Cipriani: BMJ, 2015, vol. 350, h2723.

    Article  PubMed  Google Scholar 

  27. Y. Tamura, Y. Sugimoto, H. Soda, and A. McLean: Keikinzoku/J. Jpn. Inst. Light Met., 2013, vol. 63, pp. 279–85.

    Article  CAS  Google Scholar 

  28. X. Li, X. Liu, S. Wu, K.W.K. Yeung, Y.F. Zheng, and P.K. Chu: Acta Biomater., 2016, vol. 45, pp. 2–30.

    Article  CAS  PubMed  Google Scholar 

  29. A. Milenin, P. Kustra, J.-M. Seitz, F.-W. Bach, and D. Bormann: Wire J. Int., 2011, vol. 44, pp. 74–81.

    CAS  Google Scholar 

  30. A. Milenin, P. Kustra, M. Wróbel, M. Paćko, and D. Byrska-Wójcik: Arch. Metall. Mater., 2019, vol. 64, pp. 1139–43.

    Article  CAS  Google Scholar 

  31. R.-C. Zeng, W.-C. Qi, H.-Z. Cui, F. Zhang, S.-Q. Li, and E.-H. Han: Corros. Sci., 2015, vol. 96, pp. 23–31.

    Article  CAS  Google Scholar 

  32. C.L. Liu, Y.J. Wang, R.C. Zeng, X.M. Zhang, W.J. Huang, and P.K. Chu: Corros. Sci., 2010, vol. 52, pp. 3341–47.

    Article  CAS  Google Scholar 

  33. A. Milenin, P. Kustra, D. Byrska-Wójcik, M. Wróbel, M. Paćko, J. Sulej-Chojnacka, S. Matuszyńska, and B. Płonka: Arch. Civ. Mech., 2020, vol. 20, p. 60.

    Article  Google Scholar 

  34. A. Milenin, M. Wróbel, P. Kustra, D. Byrska-Wójcik, J. Sulej-Chojnacka, B. Płonka, K. Łukowicz, K. Truchan, and A. Osyczka: Materials, 2021, vol. 14, p. 6673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. E. Barany, I.A. Bergdahl, A. SchÜTz, S. Skerfving, and A. Oskarsson: J. Anal. At. Spectrom., 1997, vol. 12, pp. 1005–09.

    Article  CAS  Google Scholar 

  36. J. Meija, A.M. Michałowska-Kaczmarczyk, and T. Michałowski: Anal. Bioanal. Chem., 2016, vol. 408, pp. 1721–22.

    Article  CAS  PubMed  Google Scholar 

  37. G. Palumbo, D. Dunikowski, R. Wirecka, T. Mazur, U. Lelek-Borkowska, K. Wawer, and J. Banaś: Materials, 2021, vol. 14, p. 5084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. D.A. Shirley: Phys. Rev. B, 1972, vol. 5, pp. 4709–714.

    Article  Google Scholar 

  39. T. Kokubo and H. Takadama: Biomaterials, 2006, vol. 27, pp. 2907–915.

    Article  CAS  PubMed  Google Scholar 

  40. Z. Shi, M.Y. Liu, and A. Atrens: Corros. Sci., 2010, vol. 52, pp. 579–88.

    Article  CAS  Google Scholar 

  41. ASTM: in Annual Book of ASTM Standards, vol. 3.02, ASTM International, West Conshohocken, 2006.

  42. Y. Song, D. Shan, R. Chen, F. Zhang, and E.-H. Han: Mater. Sci. Eng. C, 2009, vol. 29, pp. 1039–45.

    Article  CAS  Google Scholar 

  43. Y. Xin, C.L. Liu, X. Zhang, G. Tang, X. Tian, and P.K. Chu: J. Mater. Res., 2011, vol. 22, pp. 2004–2011.

    Article  Google Scholar 

  44. G. Baril, G. Galicia, C. Deslouis, N. Pébère, B. Tribollet, and V. Vivier: J. Electrochem. Soc., 2007, vol. 154, p. C108.

    Article  CAS  Google Scholar 

  45. G. Song, A. Atrens, D. St John, X. Wu, and J. Nairn: Corros. Sci., 1997, vol. 39, pp. 1981–2004.

    Article  CAS  Google Scholar 

  46. S.-B. Choi, N.-W. Kim, D.-K. Lee, and H. Yu: J. Nanosci. Nanotechnol., 2013, vol. 13, pp. 7577–80.

    Article  CAS  PubMed  Google Scholar 

  47. H.B. Yao, Y. Li, and A.T.S. Wee: Appl. Surf. Sci., 2000, vol. 158, pp. 112–19.

    Article  CAS  Google Scholar 

  48. D. Luna-Zaragoza, E. Romero-Guzmán, and L. Reyes-Gutiérrez: J. Min. Mater. Charact. Eng., 2009, vol. 8, pp. 591–609.

    Google Scholar 

  49. Y. Lochaiwatana, S. Poolthong, I. Hirata, M. Okazaki, S. Swasdison, and N. Vongsavan: Dent. Mater. J., 2015, vol. 34, pp. 31–40.

    Article  CAS  PubMed  Google Scholar 

  50. Ł Pajchel, V. Kowalska, D. Smolen, A. Kedzierska, E. Pietrzykowska, W. Lojkowski, and W. Kolodziejski: Mater. Res. Bull., 2013, vol. 48, pp. 4818–25.

    Article  CAS  Google Scholar 

  51. S. Krimm and J. Bandekar: Adv. Protein Chem., 1986, vol. 38, pp. 181–364.

    Article  CAS  PubMed  Google Scholar 

  52. T.S.N. Sankara Narayanan and M.H. Lee: RSC Adv., 2016, vol. 6, pp. 16100–114.

    Article  Google Scholar 

  53. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20. National Institute of Standards and Technology, Gaithersburg, MD, 2000. https://doi.org/10.18434/T4T88K, accessed 2 June 2023.

  54. D. Święch, G. Palumbo, N. Piergies, K. Kollbek, M. Marzec, A. Szkudlarek, and C. Paluszkiewicz: Appl. Surf. Sci., 2023, vol. 608, 155138.

    Article  Google Scholar 

  55. A.B. Christie, J. Lee, I. Sutherland, and J.M. Walls: Appl. Surf. Sci., 1983, vol. 15, pp. 224–37.

    Article  CAS  Google Scholar 

  56. P. Rouxhet and M. Genet: Surf. Interface Anal., 2011, vol. 43, pp. 1453–70.

    Article  CAS  Google Scholar 

  57. M.J. Genet, C.C. Dupont-Gillain, and P.G. Rouxhet: in Medical Applications of Colloids, E. Matijevic, ed., Springer, New York, 2008.

  58. D. Briggs: Surface Analysis of Polymers by XPS and Static SIMS, Cambridge University Press, New York, 2005.

    Google Scholar 

  59. A. Le Febvrier, J. Jensen, and P. Eklund: J. Vac. Sci. Technol. A, 2017, vol. 35, pp. 021407-1–21411.

    Article  Google Scholar 

  60. S.C. Stuart, E. Satchet, A. Sandin, J.-P. Maria, J.E. Rowe, D.B. Dougherty, and M. Ulrich: J. Vac. Sci. Technol. B, 2013, vol. 31, pp. 051804-1–51806.

    Article  Google Scholar 

  61. D. Tie, F. Feyerabend, N. Hort, R. Willumeit, and D. Hoeche: Adv. Eng. Mater., 2010, vol. 12, pp. B699-704.

    Article  Google Scholar 

  62. G. Beamson and D. Briggs: High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database, Wiley, Chichester, 1992.

    Google Scholar 

  63. V.I. Nefedov, D. Gati, B.F. Dzhurinskii, N.P. Sergushin, and Y.V. Salyn: Russ. J. Inorg. Chem, 1975, vol. 20, pp. 2307–14.

    CAS  Google Scholar 

  64. R. Harrison, D. Maradze, S. Lyons, Y.F. Zheng, and Y. Liu: Prog. Nat. Sci. Mater. Int., 2014, vol. 24, pp. 539–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Polish Ministry of Education and Science, project no 16.16.170. 7998 and 16.16.110.663. The investigation was co-founded within project no. POIR.04.01.04-00-0074/17 named: “Comprehensive development and preparation for the implementation of innovative implant solutions in the treatment of animals, surgical instruments for their implantology and biodegradable surgical thread for veterinary medicine” Action 4.1 “Research and Development,” Subaction 4.1.4 “Application projects” Operational Program Smart Growth 2014-2020 co-financed from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urszula Lelek-Borkowska.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lelek-Borkowska, U., Wróbel, M., Marzec, M. et al. Mg–Ca Surgical Wires Degradation in Animal Serum. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07387-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07387-8

Navigation