Skip to main content
Log in

Wear Conditions-Dependent Tribological Behavior in Q&P Medium-Mn Steels: The Role of TRIP Effect and Strain Hardening

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural evolution during deformation affects the mechanical properties of materials. Studying the response of wear resistance in multiphase steel containing austenite under different wear conditions is important because of the unclear synergetic evolution of multiphase and varied transformation-induced plasticity (TRIP) effect. In this study, 5Mn steel treated with different quenching and partitioning processes was investigated using high- and low-stress three-body (G65) abrasion wear tests. The results were compared with those for single-phase martensitic steel. In the G65 abrasion wear test, the martensitic steel exhibited the best wear resistance, whereas, in the high-stress abrasive wear, the best wear resistance was obtained for the QP-240 steel containing 9.8 pct retained austenite with low hardness. This indicated a substantial improvement compared to that of martensitic steel. The superior high-stress abrasion resistance of the QP-240 steel can be attributed to the combination of hard martensite and ductile phases (austenite and tempered martensite) as well as a sufficiently enhanced TRIP effect. The subsurface microstructural evolution under two different wear conditions is critical for differentiating the wear properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. V. Rada, I. Miettunen, and V.T. Kuokkala: Wear, 2013, vol. 301(1–2), pp. 94–101.

    Google Scholar 

  2. Y. Sahin, V. Kilicli, M. Ozer, and M. Erdogan: Wear, 2010, vol. 268(1–2), pp. 153–65.

    Article  CAS  Google Scholar 

  3. K. Valtonen, N. Ojala, O. Haiko, and V.T. Kuokkala: Wear, 2019, vol. 426–427, pp. 3–13.

    Article  Google Scholar 

  4. S.G. Sapate, A. Selokar, and N. Garg: Mater. Des., 2010, vol. 31(8), pp. 4001–06.

    Article  CAS  Google Scholar 

  5. E.G. Moghaddam, N. Karimzadeh, N. Varahram, and P. Davami: Mater. Sci. Eng. A, 2013, vol. 585, pp. 422–29.

    Article  CAS  Google Scholar 

  6. B. Narayanaswamy, P. Hodgson, and H. Beladi: Wear, 2016, vol. 350–351, pp. 155–65.

    Article  Google Scholar 

  7. L. Zheng, W.J. Lai, and T. Xin: Mater. Sci. Eng. A, 2022, vol. 845, 143203.

    Article  Google Scholar 

  8. J. Rendón and M. Olsson: Wear, 2009, vol. 267(11), pp. 2055–61.

    Article  Google Scholar 

  9. D. Liang, C. Zhao, and W. Zhu: Metall. Mater. Trans. A, 2020, vol. 51, pp. 2834–50.

    Article  CAS  Google Scholar 

  10. C. Trevisiol, A. Jourani, and S. Bouvier: Tribol. Int., 2017, vol. 3, pp. 411–25.

    Article  Google Scholar 

  11. W. Molnar, A. Nevosad, and H. Rojacz: Wear, 2018, vol. 414–415, pp. 174–81.

    Article  Google Scholar 

  12. A. Misra and I. Finnie: Wear, 1981, vol. 68(1), pp. 33–39.

    Article  Google Scholar 

  13. A. Misra and I. Finnie: Wear, 1980, vol. 60(1), pp. 111–21.

    Article  Google Scholar 

  14. M. Antonov, I. Hussainova, R. Veinthal, and J. Pirso: Tribol. Int., 2012, vol. 46, pp. 261–68.

    Article  CAS  Google Scholar 

  15. C. Pieper, T. Oschmann, D. Markauskas, and A. Fischer: Chem. Eng. Technol., 2016, vol. 39, pp. 1497–1508.

    Article  CAS  Google Scholar 

  16. X.H. Ren and J.H. Zhu: Mater. Sci. Eng. A, 2011, vol. 528(22–23), pp. 7020–23.

    Article  CAS  Google Scholar 

  17. O. Haiko, P. Kaikkonen, M. Somani, and K. Valtonen: Wear, 2020, vol. 456–457, 203386.

    Article  Google Scholar 

  18. P. Krishnan, P. Lakshmanan, and S. Palani: Mater. Today: Proc., 2022, vol. 62, pp. 566–71.

    CAS  Google Scholar 

  19. X. Xu, S. van der Zwaag, and W. Xu: Wear, 2013, vol. 301(1–2), pp. 89–93.

    Article  CAS  Google Scholar 

  20. G.J. Gore and J.D. Gates: Wear, 1997, vol. 203–204, pp. 544–63.

    Article  Google Scholar 

  21. A.G. Kostryzhev, C.R. Killmore, D. Yu, and E.V. Pereloma: Wear, 2020, vol. 446–447, 203203.

    Article  Google Scholar 

  22. H.S. Yang and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2008, vol. 24, pp. 335–42.

    Article  CAS  Google Scholar 

  23. V.A. Leiro, E. Vuorinen, K.G. Sundin, B. Prakash, T. Sourmail, R.E. Smanio, G. Caballero, and C. Garcia-Mateo: Wear, 2013, vol. 298–299, pp. 42–47.

    Article  Google Scholar 

  24. A. Sundström, J. Rendon, and M. Olsson: Wear, 2001, vol. 247, pp. 88–99.

    Article  Google Scholar 

  25. W. Wu, Y.W. Wang, P. Makrygiannis, F. Zhu, and G.A. Thomas: Mater. Sci. Eng. A, 2018, vol. 711, pp. 611–23.

    Article  CAS  Google Scholar 

  26. C.Y. Liu, S.C. Shen, and C.L. Wu: Mater Charact, 2022, vol. 191, 112095.

    Article  CAS  Google Scholar 

  27. J. Hu, X.Y. Li, and W. Xu: Mater. Sci. Eng. A, 2022, vol. 855, 143904.

    Article  CAS  Google Scholar 

  28. A. Dutta, T.M. Park, J.H. Nam, S.I. Lee, B. Hwang, and W.S. Choi: Mater. Char., 2021, vol. 174, pp. 1–14.

    Article  Google Scholar 

  29. D.T. Pierce, D.R. Coughlin, D.L. Williamson, and J.G. Speer: Acta Mater., 2015, vol. 90, pp. 417–30.

    Article  CAS  Google Scholar 

  30. E.J. Seo, L. Cho, Y. Estrin, and B.C. De Cooman: Acta Mater., 2016, vol. 113, pp. 124–39.

    Article  CAS  Google Scholar 

  31. H. Chen, D. Zhao, Q. Wang, Y. Qiang, and J. Qi: Friction, 2017, vol. 5, pp. 447–54.

    Article  Google Scholar 

  32. ASTM G65-16: Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Wheel Apparatus, ASTM International, West Conshohocken, 2016.

  33. V.G. Efremenko, V.I. Zurnadzhi, and Y.G. Chabak: Mater. Sci., 2017, vol. 53, pp. 67–75.

    Article  CAS  Google Scholar 

  34. H.Y. Dong, K.M. Wu, and X.L. Wang: Wear, 2018, vol. 15(402–403), pp. 21–29.

    Article  Google Scholar 

  35. V.I. Zurnadzhy, V.G. Efremenko, and M.N. Brykov: J. Frict. Wear, 2020, vol. 41, pp. 119–24.

    Article  Google Scholar 

  36. G. Saha, K. Valtonen, and A. Saastamoinen: Wear, 2020, vol. 450–451, 203263.

    Article  Google Scholar 

  37. X.C. Yan, J. Hu, X. Zhang, and W. Xu: Tribol. Int., 2022, vol. 175, 107803.

    Article  CAS  Google Scholar 

  38. A. Navarro-López, J. Hidalgo, J. Sietsma, and M.J. Santofimia: Mater Charact, 2017, vol. 128, pp. 248–56.

    Article  Google Scholar 

  39. P.V. Moghaddam, M. Rinaudo, J. Hardell, E. Vuorinen, and B. Prakash: Wear, 2020, vol. 460–461, 203484.

    Article  Google Scholar 

  40. K.H. ZumGahr: Tribol. Int., 1998, vol. 31(10), pp. 587–96.

    Article  Google Scholar 

  41. O. Haiko, M. Somani, D. Porter, and P. Kantanen: Wear, 2018, vol. 400–401, pp. 21–30.

    Article  Google Scholar 

  42. S. Priska and A. Fischer: Lubricants, 2018, vol. 6(2), p. 34.

  43. L. Huang, X.T. Deng, and Y. Jia: Wear, 2019, vol. 434–435, 202971.

    Article  Google Scholar 

  44. N. Barbara, J. Jose, and M. Leandro: Wear, 2022, vol. 5, 204439.

    Google Scholar 

  45. R. Kim, C. Bae, and J. Kim: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 322–30.

    Article  Google Scholar 

  46. A. Ismailov: Wear, 2018, vol. 408–409, pp. 65–71.

    Article  Google Scholar 

  47. X. Xu, S. van der Zwaag, and W. Xu: Wear, 2016, vol. 358–359, pp. 80–88.

    Google Scholar 

  48. L. Fang, Q.D. Zhou, and Y.J. Li: Wear, 1991, vol. 151(2), pp. 313–21.

    Article  CAS  Google Scholar 

  49. S. Das, B.K. Prasad, A.K. Jha, O.P. Modi, and A.H. Yegneswaran: Wear, 1993, vol. 162–164, pp. 802–10.

    Article  Google Scholar 

  50. D. De Knijf, R. Petrov, and C. Föjer: Mater. Sci. Eng. A, 2014, vol. 615(1), pp. 107–15.

    Article  Google Scholar 

  51. M. Shamsujjoha: Mater. Sci. Eng. A, 2020, vol. 776, 139039.

    Article  CAS  Google Scholar 

  52. S. Hanke, A. Fischer, and J.D. Santos: Wear, 2015, vol. 338–339(15), pp. 332–38.

    Article  Google Scholar 

  53. J. Chiang, B. Lawrence, J.D. Boyd, and A.K. Pilkey: Mater. Sci. Eng. A, 2011, vol. 528(13–14), pp. 4516–21.

    Article  Google Scholar 

  54. J.Y. He, F.P. Yuan, M.X. Yang, and L.L. Zhou: Mater. Sci. Eng. A, 2020, vol. 791, 139780.

    Article  CAS  Google Scholar 

  55. M.I. Latypov, S. Shin, B.C. De Cooman, and H.S. Kim: Acta Mater., 2016, vol. 108, p. 219.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was financially supported by the National Natural Science Foundation of China (Grant numbers 52011530032, 52111530093, 52071066).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Hu or Wei Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Hu, J., Chai, Z. et al. Wear Conditions-Dependent Tribological Behavior in Q&P Medium-Mn Steels: The Role of TRIP Effect and Strain Hardening. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07385-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07385-w

Navigation