Skip to main content
Log in

Unified Transformation Pattern of Hexagonal Transition Metal Hemicarbides and Heminitrides from Their Metal Parents

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The solid-state phase transformations from body-centered cubic (bcc) transition metals such as V, Nb, Ta, Cr, Mo, and W to hexagonal close-packed (hcp) transition metal hemicarbides and heminitrides (M2C and M2N) were investigated in this work. It is thought that three-dimensional overall lattice distortions induced by complex ordering between interstitial atoms (C, N) and structural vacancies in the transition metal parents are the key-driving force for these structural changes. Moreover, these phase transformation paths were described by ab initio simulations and symmetry analyses. Different transformation paths are categorized, and the reasons for the inability to complete the transformation from bcc to hcp are identified, while all paths that can be transformed into hcp structures follow a unified formation pattern. The number of atoms required for this pattern is defined for a specific set of ordered atoms known as transformation units. These units can be incorporated into the main phase transformation crystallography, describing transformation processes from the atomic-level transformation units to a long-range strain-free interface comprising of the transformation units and interface defects, at microscopic and macroscopic scales. The dynamic origins of the formal crystallographic requirements in interstitials-induced transformations are also elucidated as well. The research can provide some physical significance of coherent terraces within step structures in phase transformation crystallography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.W. Christian: The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, 2002.

    Google Scholar 

  2. J.W. Christian: Prog. Mater. Sci., 1997, vol. 42, pp. 101–08.

    Article  Google Scholar 

  3. H.I. Aaronson and M.G. Hall: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1797–1819.

    Article  CAS  Google Scholar 

  4. H.I. Aaronson, B.C. Muddle, J.F. Nie, and J.P. Hirth: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2541–47.

    Article  CAS  Google Scholar 

  5. M.-X. Zhang and P.M. Kelly: Prog. Mater. Sci., 2009, vol. 54, pp. 1101–70.

    Article  CAS  Google Scholar 

  6. W.-Z. Zhang and G.C. Weatherly: Prog. Mater. Sci., 2005, vol. 50, pp. 181–292.

    Article  CAS  Google Scholar 

  7. J.M. Howe, R.C. Pond, and J.P. Hirth: Prog. Mater. Sci., 2009, vol. 54, pp. 792–838.

    Article  CAS  Google Scholar 

  8. Y. Cui, Y. Zhang, L. Sun, M. Feygenson, M. Fan, X.L. Wang, P.K. Liaw, I. Baker, and Z. Zhang: Mater. Today Phys., 2022, vol. 24, p. 100668.

    Article  CAS  Google Scholar 

  9. Y. Peng, W. Li, F. Wang, T. Still, A.G. Yodh, and Y. Han: Nat. Commun., 2017, vol. 8, p. 14978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. B. Vishwanadh, K.V. Mani Krishna, A. Upadhyay, R. Banerjee, A. Arya, R. Tewari, H.L. Fraser, and G.K. Dey: Acta Mater., 2016, vol. 108, pp. 186–196.

    Article  CAS  Google Scholar 

  11. H. Xue, C. Yang, F. De Geuser, P. Zhang, J. Zhang, B. Chen, F. Liu, Y. Peng, J. Bian, G. Liu, A. Deschamps, and S. Jun: Nat. Mater., 2023, vol. 22, pp. 434–41.

    Article  CAS  PubMed  Google Scholar 

  12. D.I. Potter: J. Less-Common Met., 1973, vol. 31, pp. 299–309.

    Article  CAS  Google Scholar 

  13. R.C. Pond, S. Celotto, and J.P. Hirth: Acta Mater., 2003, vol. 51, pp. 5385–98.

    Article  CAS  Google Scholar 

  14. J.P. Hirth, R.C. Pond, R.G. Hoagland, X.-Y. Liu, and J. Wang: Prog. Mater. Sci., 2013, vol. 58, pp. 749–823.

    Article  Google Scholar 

  15. D. Qiu and W.-Z. Zhang: Acta Mater., 2008, vol. 56, pp. 2003–2014.

    Article  CAS  Google Scholar 

  16. R.B. King: Encyclopedia of Inorganic Chemistry, Wiley, Hoboken, 2006.

    Google Scholar 

  17. C.H. de Novion and V. Maurice: J. Phys. Colloques, 1977, vol. 38, pp. C7-211–20.

  18. C.H. de Novion and J.P. Landesman: Pure Appl. Chem., 1985, vol. 57, pp. 1391–1402.

    Article  Google Scholar 

  19. R. Freer: The Physics and Chemistry of Carbides, Nitrides and Borides, Springer, Dordrecht, 1990.

  20. A.S. Kurlov and A.I. Gusev: Phys. Rev. B, 2007, vol. 76, p. 174115.

    Article  Google Scholar 

  21. A.I. Gusev, A.A. Rempel, and A.J. Magerl: Disorder and Order in Strongly Nonstoichiometric Compounds, Springer, Berlin, 2013.

    Google Scholar 

  22. N. De Leon, B. Wang, C.R. Weinberger, L.E. Matson, and G.B. Thompson: Acta Mater., 2013, vol. 61, pp. 3905–13.

    Article  Google Scholar 

  23. C.R. Weinberger and G.B. Thompson: J. Am. Ceram. Soc., 2018, vol. 101, pp. 4401–24.

    Article  CAS  Google Scholar 

  24. C. Deng, L. Zhong, X. Wang, J. Zhu, J. Peng, and X. Hu: J. Am. Ceram. Soc., 2023, vol. 106, pp. 2184–95.

    Article  CAS  Google Scholar 

  25. R.K. Viswanadham and C.A. Wert: J. Less-Common Met., 1976, vol. 48, pp. 135–50.

    Article  CAS  Google Scholar 

  26. A. Togo and I. Tanaka: Phys. Rev. B, 2013, vol. 87, p. 184104.

    Article  Google Scholar 

  27. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1997, vol. 78, p. 1396.

    Article  CAS  Google Scholar 

  28. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne: J. Phys. Condes. Matter, 2002, vol. 14, p. 2717.

    Article  CAS  Google Scholar 

  29. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, and M.C. Payne: Z. Kristall., 2005, vol. 220, pp. 567–70.

    Article  CAS  Google Scholar 

  30. F.C. Frank: Martensite Acta Metall., 1953, vol. 1, pp. 15–21.

    Article  CAS  Google Scholar 

  31. B.A. Bilby: Report of the Conference on Defects in Crystalline Solids, The Physical Society, London, 1955.

  32. B.P.J. Sandvik and C.M. Wayman: Metall. Trans. A, 1983, vol. 14, pp. 835–44.

    Article  CAS  Google Scholar 

  33. W. Bollmann: Crystal Defects and Crystalline Interfaces, Springer, Berlin, 1970.

    Book  Google Scholar 

  34. B. Dupé, B. Amadon, Y.-P. Pellegrini, and C. Denoual: Phys. Rev. B, 2013, vol. 87, p. 024103.

    Article  Google Scholar 

  35. N. Ishimatsu, Y. Sata, H. Maruyama, T. Watanuki, N. Kawamura, M. Mizumaki, T. Irifune, and H. Sumiya: Phys. Rev. B, 2014, vol. 90, p. 014422.

    Article  CAS  Google Scholar 

  36. J.B. Liu and D.D. Johnson: Phys. Rev. B, 2009, vol. 79, p. 134113.

    Article  Google Scholar 

  37. W.G. Burgers: Physica, 1934, vol. 1, pp. 561–86.

    Article  CAS  Google Scholar 

  38. F.M. Wang and R. Ingalls: Phys. Rev. B, 1998, vol. 57, p. 5647.

    Article  CAS  Google Scholar 

  39. H.L. Wang, Y.L. Hao, S.Y. He, K. Du, T. Li, E.G. Obbard, J. Hudspeth, J.G. Wang, Y.D. Wang, Y. Wang, et al.: Scr. Mater., 2017, vol. 133, pp. 70–74.

    Article  CAS  Google Scholar 

  40. C. Xie, N. Liu, X. Cheng, D. Li, and Q. Zeng: J. Eur. Ceram. Soc., 2016, vol. 36, pp. 3593–99.

    Article  CAS  Google Scholar 

  41. V.I. Razumovskiy, A.V. Ruban, J. Odqvist, and P.A. Korzhavyi: Phys. Rev. B, 2013, vol. 87, p. 054203.

    Article  Google Scholar 

  42. U. Dahmen: Acta Metall., 1982, vol. 30, pp. 63–73.

    Article  CAS  Google Scholar 

  43. X.S. Yang, S. Sun, X.L. Wu, E. Ma, and T.Y. Zhang: Sci. Rep., 2014, vol. 4, p. 6141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. J.M. Lang, U. Dahmen, and K.H. Westmacott: Phys. Stat. Sol. (a), 1983, vol. 75, pp. 409–20.

    Article  CAS  Google Scholar 

  45. R. Diercks and C.A. Wert: Metall. Mater. Trans. B, 1972, vol. 3B, pp. 1699–1708.

    Article  Google Scholar 

  46. U. Dahmen, K.H. Westmacott, and G. Thomas: Acta Metall., 1981, vol. 29, pp. 627–35.

    Article  CAS  Google Scholar 

  47. A. Deschanvres, A. Maisseu, G. Nouet, and J. Vicens: J. Less-Common Met., 1974, vol. 34, pp. 237–55.

    Article  CAS  Google Scholar 

  48. D.F. Johnson and E.A. Carter: J. Chem. Phys., 2008, vol. 128, p. 104703.

    Article  PubMed  Google Scholar 

  49. M.S. Rashid and T.E. Scott: J. Less-Common Met., 1973, vol. 31, pp. 377–88.

    Article  CAS  Google Scholar 

  50. J.W. Christian: Acta Metall. Sin., 1997, vol. 33, pp. 150–56.

    CAS  Google Scholar 

  51. F. Ye, W.-Z. Zhang, and D. Qiu: Acta Mater., 2006, vol. 54, pp. 5377–84.

    Article  CAS  Google Scholar 

  52. D. Qiu, M.-X. Zhang, P.M. Kelly, and T. Furuhara: Acta Mater., 2013, vol. 61, pp. 7624–38.

    Article  CAS  Google Scholar 

  53. T. Furuhara, T. Ogawa, and T. Maki: Philos. Mag. Lett., 1995, vol. 72, pp. 175–83.

    Article  CAS  Google Scholar 

  54. T. Furuhara and H.I. Aaronson: Acta Metall. Mater., 1991, vol. 39, pp. 2857–72.

    Article  Google Scholar 

  55. J.H. Van der Merwe, G.J. Shiflet, and P.M. Stoop: Metall. Trans. A, 1991, vol. 22, pp. 1165–75.

    Article  Google Scholar 

  56. J.P. Hirth and R.C. Pond: Acta Mater., 1996, vol. 44, pp. 4749–63.

    Article  CAS  Google Scholar 

  57. J.F. Nie: Acta Mater., 2004, vol. 52, pp. 795–807.

    Article  CAS  Google Scholar 

  58. J.F. Nie: Scr. Mater., 2005, vol. 52, pp. 687–91.

    Article  CAS  Google Scholar 

  59. J.F. Nie: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 841–49.

    Article  CAS  Google Scholar 

  60. B.C. Muddle and J.F. Nie: Scr. Mater., 2002, vol. 47, pp. 187–92.

    Article  CAS  Google Scholar 

  61. Y. Zheng, R.E.A. Williams, G.B. Viswanathan, W.A.T. Clark, and H.L. Fraser: Acta Mater., 2018, vol. 150, pp. 25–39.

    Article  CAS  Google Scholar 

  62. M. Otte: Mechanism of the Martensitic Transformation in Titanium and Its Alloys, Pergamon Press, London, 1970.

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank National Natural Science Foundation of China (U20A20235, 52171127, 51971173), Science and Technology Program of Xi'an (22GXFW0069), and Science and Technology Program of Xianyang (L2022-QCYZX-GY-002) for their support. Beijing super cloud computing center is acknowledged for access to their computational resources.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lisheng Zhong or Xianhui Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, C., Zhong, L. & Wang, X. Unified Transformation Pattern of Hexagonal Transition Metal Hemicarbides and Heminitrides from Their Metal Parents. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07379-8

Navigation