Skip to main content
Log in

Weld Cracking Susceptibility of High-Cr Ni-Base Fe Alloys and Its Improvement—Development of Novel Test Method for Ductility-Dip Cracking and New Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The susceptibility to weld cracking such as ductility-dip cracking (DDC), liquation cracking, and solidification cracking, for laboratory melted high-Cr Ni-base Fe alloys was evaluated by Longi-Varestraint, strain to fracture (STF), on-heating on-cooling hot ductility, five-pass four-layer build-up (FPFLB) and axial tensile preloaded thermal cycling (TPLTC) tests, was compared with commercial Alloy 52. The on-heating on-cooling hot ductility and Longi-Varestraint tests showed similar cracking susceptibility, but they were not so suitable for the evaluation of DDC susceptibility. The DDC susceptibility for various materials was evaluated by the FPFLB, STF, and TPLTC tests, and there are no significant inconsistencies for DDC susceptibility between the results of these tests. The TPLTC test which simulates the thermal history at the DDC detected location in FPFLB test specimen and the restrained stress in multi-pass welded joint was performed using the all weld metal round-notched bar specimens. Evaluation was performed by the number of thermal cycles until rupture. It was confirmed that the TPLTC test method is a novel test method that can be easily performed comparing with FPFLB and STF tests. A Nb and C containing 30 pct Cr Ni-base Fe alloy without Mo is suggested as an advantageous new DDC-resistant weld metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J.N. DuPont, C.V. Robino, and A.R. Marder: Welding J., 1998, vol. 77(10), pp. 417s–431s.

    Google Scholar 

  2. G.D. Bengough: J. Inst. Metals, 1912, vol. VII, pp. 123–74.

    Google Scholar 

  3. O.F. Hudson: J. Inst. Metals, 1912, vol. VII, pp. 182–83.

    Google Scholar 

  4. H.D. Newell: The Performance of 18–8 at High Temperatures. The Book of Stainless Steel, The American Society for Metals, Detroit, 1933, p. 364.

    Google Scholar 

  5. H.S. Kalish and F.J. Dunkerley: Trans. Am. Inst. Mining Metall. Eng., 1949, vol. 180, pp. 637–56.

    Google Scholar 

  6. R.P. Carreker and R.W. Guard: Am. Inst. Mining Metall. Pet. Eng. Trans., 1956, vol. 206, pp. 178–84.

    Google Scholar 

  7. J.W. Pugh: Am. Inst. Mining Metall. Pet. Eng., 1957, vol. 209, pp. 1243–44.

    CAS  Google Scholar 

  8. F.N. Rhines and P.J. Wray: Trans. Am. Soc. Metals, 1961, vol. 54, pp. 117–28.

    Google Scholar 

  9. W.F. Savage and C.D. Lundin: Welding J., 1965, vol. 44(10), pp. 433-s–442-s.

    Google Scholar 

  10. W.F. Savage and C.D. Lundin: Welding J., 1966, vol. 44(12), pp. 497-s–503-s.

    Google Scholar 

  11. T. Senda, F. Matsuda, G. Takano, K. Watanabe, and T. Matsusaka: Trans. JWS, 1971, vol. 2(2), pp. 141–62.

    Google Scholar 

  12. J.C. Lippold: Welding J., 1983, vol. 62(1), pp. 1-s–11-s.

    Google Scholar 

  13. J.C. Lippold: Welding J, 1992, vol. 71(1), pp. 1-s–14-s.

    Google Scholar 

  14. W. Lin, J.C. Lippold, and W.A. Baeslack: Welding J., 1993, vol. 72(4), pp. 135-s–53-s.

    Google Scholar 

  15. W.F. Savage and D.W. Dickinson: Welding J., 1972, vol. 51(11), pp. 555-s–62-s.

    Google Scholar 

  16. W.F. Savage, E.F. Nippes, and G.M. Goodwin: Welding J., 1977, vol. 56(4), pp. 245-s–53-s.

    Google Scholar 

  17. T. Ogawa and E. Tsunetomi: Welding J., 1982, vol. 61(3), pp. 82–93.

    Google Scholar 

  18. D.E. Nelson, W.A. Baeslack, and J.C. Lippold: Welding J., 1987, vol. 66(8), pp. 241-s–50-s.

    Google Scholar 

  19. W.A. Baeslack, W.P. Lata, and S.L. West: Welding J., 1988, vol. 67(4), pp. 77-s–87-s.

    Google Scholar 

  20. V. Shankar, T.P.S. Gill, S.L. Mannan, and S. Sundaresan: Welding J., 1998, vol. 77(5), pp. 193-s–201-s.

    Google Scholar 

  21. P.W. Ramsey, R.A. Keidel, and J.N. Kuhr: Welding J., 1960, vol. 39(5), pp. 219-s–24-s.

    CAS  Google Scholar 

  22. G.M. Goodwin: Welding J., 1987, vol. 66(2), pp. 33-s–38-s.

    Google Scholar 

  23. T. Zacharia: Welding J., 1994, vol. 73(7), pp. 164-s–72-s.

    Google Scholar 

  24. T.W. Nelson, J.C. Lippold, W. Lin, and W.A. Baeslack: Welding J., 1997, vol. 76(3), pp. 110-s–19-s.

    Google Scholar 

  25. R.S. Brown and J.B. Koch: Welding J., 1978, vol. 57(2), pp. 38-s–42-s.

    Google Scholar 

  26. F.S. Warren and M.K. Boris: Welding J., 1966, vol. 45(1), pp. 13-s–25-s.

    Google Scholar 

  27. F. Matsuda, H. Nakagawa, S. Minehisa, N. Sakabata, A. Ejima, and K. Nohara: Trans. JWRI, 1984, vol. 13(2), pp. 69–75.

    Google Scholar 

  28. C.D. Lundin, W.T. Delong, and D.F. Spond: Welding J., 1976, vol. 55(6), pp. 145-s–51-s.

    Google Scholar 

  29. C.D. Lundin, and P.D. Chou: Hot Cracking Susceptibility of Austenitic Stainless Steel Weld Metals, Welding Research Council Bulletin, 289, 1989.

  30. N.E. Nissley, M.G. Collins, G. Guaytima, and J.C. Lippold: Welding World, 2013, vol. 46(7–8), pp. 32–40.

    Google Scholar 

  31. N.E. Nissley and J.C. Lippold: Welding J., 2003, vol. 82(12), pp. 355–64.

    Google Scholar 

  32. N.E. Nissley, J.C. Lippold: Ductility-dip cracking susceptibility of austenitic alloys. Proc. 6th International Trends in Welding Research, ASM International, 2003, pp. 64–69.

  33. J.C. Lippold: Recent developments in weldability testing for advanced materials, 2005. Proc. International Conference on Joining of Advanced & Specialty Materials ASM International, 2005.

  34. N.E. Nissley and J.C. Lippold: Welding J., 2008, vol. 87(10), pp. 257-s–64-s.

    Google Scholar 

  35. F.F. Noecker II. and J.N. DuPont: Welding J., 2009, vol. 88(1), pp. 7-s–19-s.

    Google Scholar 

  36. F.F. Noecker II. and J.N. DuPont: Welding J., 2009, vol. 88(3), pp. 62–77.

    Google Scholar 

  37. Y. Nakao, K. Shinozaki, T. Ogawa, and H. Sakurai: Trans. Jpn. Welding Soc., 1993, vol. 24(2), pp. 101–06.

    Google Scholar 

  38. M.G. Collins and J.C. Lippold: Welding J., 2003, vol. 82(10), pp. 288-s–95-s.

    Google Scholar 

  39. M.G. Collins, A.J. Ramirez, and J.C. Lippold: Welding J., 2004, vol. 83(2), pp. 39–49.

    Google Scholar 

  40. A.J. Ramirez and J.C. Lippold: Mater. Sci. Eng. A, 2004, vol. 380, pp. 259–71.

    Article  Google Scholar 

  41. A.J. Ramirez and J.C. Lippold: Mater. Sci. Eng. A, 2004, vol. 380, pp. 245–58.

    Article  Google Scholar 

  42. N.E. Nissley and J.C. Lippold: Welding J., 2009, vol. 88(6), pp. 131–40.

    Google Scholar 

  43. S.L. McCracken, and J.K. Tatman: Comparison of ductility-dip cracking to computer modeling with SysweldTM in a narrow groove multi-pass weld. Proc. of the 2016 ASME Pressure Vessels & Piping Division Conference PVP-2016, July 17–21, Vancouver, BC, Canada, PVP 2016-63846, 2016.

  44. S.L. McCracken, and J.K. Tatman: Prediction of ductility-dip cracking in narrow groove welds using computer simulation of strain accumulation. Cracking Phenomena in Welds IV, Springer, pp. 119–41, 2016.

  45. R.L. Roche, D. Moulin, and J. Lebey: Practical Analysis of Ratchetting. Nuclear Engineering and Design, 2 July, 1982, pp. 51–66.

  46. S.S. Manson: Thermal Stress and Low-Cycle Fatigue, McGraw-Hill, New York, 1966.

    Book  Google Scholar 

  47. K. Nakane, N. Ohno, M. Tsuda, Y. Yagi, I. Nakagawa, and T. Atsumi: Int. J. Plast., 2008, vol. 24(10), pp. 1819–36.

    Article  CAS  Google Scholar 

  48. S.J. Luther and B.T. Alexandrov: Welding J., 2021, vol. 100(1), pp. 27–39.

    Article  Google Scholar 

  49. S.J. Luther, B.T. Alexandrov, S.L. McCracken, and J.K. Tatman: J. Manuf. Process., 2022, vol. 79, pp. 767–88.

    Article  Google Scholar 

  50. S. Kiser, R. Zhang, and M. Caruso: New technical data and commercial applications for 30% Cr nickel alloy nuclear welding products 52MSS and 152MSS. Proc. Welding and Repair Technology for Power Plants, Tenth International EPRI Conference, June 26–29, 2012.

  51. J.C. Lippold, and N.E. Nissley: Further Investigations of Ductility-Dip Cracking in High Chromium, Ni-base Filler Metals. IIW-IIC-326-06 Quebec City, Canada, 2006.

  52. T. Yonezawa: Compr. Nuclear Mater., 2020, vol. 7, pp. 233–66.

    Google Scholar 

Download references

Acknowledgments

This study was performed as a part of the collaboration research program between Tohoku University and Aalto University financially supported by Mitsubishi Heavy Industries, Ltd., Japan, and Structural Integrity of Ni-base Alloy Welds-project (SINI) of Tekes, Finland. This study was accomplished by challenging welding and cracking tests. The authors thank Dr. Yuichi Miyahara, Mr. Mikko Peltonen, Mr. Anssi Brederholm, and Dr. Teemu Sarikka for their valuable contributions in experiments and discussions.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Yonezawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yonezawa, T., Hänninen, H. & Hashimoto, A. Weld Cracking Susceptibility of High-Cr Ni-Base Fe Alloys and Its Improvement—Development of Novel Test Method for Ductility-Dip Cracking and New Alloy. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07363-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07363-2

Navigation