Skip to main content
Log in

Modeling of Cu Precipitation in Fe–Cu and Fe–Cu–Mn Alloys Under Neutron and Electron Irradiation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Irradiation-induced formation of Cu-rich precipitates embrittles reactor pressure vessel steels. In the present work, a cluster dynamics model is used to model the precipitation of Cu-rich precipitates in Fe–Cu and Fe–Cu–Mn model alloys under neutron and electron irradiation at about 300 °C (573 K). The model includes radiation-enhanced diffusion and mobile Cu-rich clusters, which have been suggested to play important roles in Cu precipitation kinetics in Fe-based alloys. Precipitation at low temperatures is accelerated by radiation-enhanced diffusion, due to excess vacancies produced by displacement damages. Previous modeling work of thermal precipitation in Fe–Cu alloys at higher temperatures suggests that Cu clusters are mobile, and that this mobility must be accounted for to predict the observed precipitation kinetics. Here, the present work extends the mobile cluster model to treat precipitation in Fe–Cu and Fe–Cu–Mn alloys under neutron and electron irradiation. Comparison of the properly parameterized model predictions with the experimental observations shows that treating radiation-enhanced cluster mobility is necessary to predict Cu precipitation kinetics under irradiation. The developed precipitation model can reasonably describe the selected reliable experimental data. The model parameter determination for the physically based model includes extensive sensitivity studies, and suggests that the present approach still needs refinement to provide an accurate model that is fully consistent with the known microscopic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.R. Odette and G.E. Lucas: Radiat. Effects Defects Solids, 1998, vol. 144, pp. 189–231.

    Article  CAS  Google Scholar 

  2. G.R. Odette and G.E. Lucas: JOM, 2001, vol. 53, pp. 18–22.

    Article  CAS  Google Scholar 

  3. S. Shu, N. Almirall, P.B. Wells, T. Yamamoto, G.R. Odette, and D.D. Morgan: Acta Mater., 2018, vol. 157, pp. 72–82.

    Article  CAS  Google Scholar 

  4. H. Ke, P. Wells, P.D. Edmondson, N. Almirall, L. Barnard, G.R. Odette, and D. Morgan: Acta Mater., 2017, vol. 138, pp. 10–26.

    Article  CAS  Google Scholar 

  5. M. Mamivand, P. Wells, H. Ke, S. Shu, G.R. Odette, and D. Morgan: Acta Mater., 2019, vol. 180, pp. 199–217.

    Article  CAS  Google Scholar 

  6. S. Cui and I.-H. Jung: Calphad, 2017, vol. 56, pp. 241–59.

    Article  CAS  Google Scholar 

  7. G.R. Odette and R.K. Nanstad: JOM, 2009, vol. 61, pp. 17–23.

    Article  CAS  Google Scholar 

  8. S. Shu, B.D. Wirth, P.B. Wells, D.D. Morgan, and G.R. Odette: Acta Mater., 2018, vol. 146, pp. 237–52.

    Article  CAS  Google Scholar 

  9. M.H. Mathon, A. Barbu, F. Dunstetter, F. Maury, N. Lorenzelli, and C.H. de Novion: J. Nucl. Mater., 1997, vol. 245, pp. 224–37.

    Article  CAS  Google Scholar 

  10. J.T. Buswell, C.A. English, M.G. Hetherington, W.J. Phythian, G.D.W. Smith, and G.M. Worrall: ASTM Spec. Tech. Publ., 1990, vol. 1046, pp. 127–53.

    CAS  Google Scholar 

  11. T.N. Lê, A. Barbu, D. Liu, and F. Maury: Scr. Metall. Mater., 1992, vol. 26, pp. 771–76.

    Article  Google Scholar 

  12. E. Meslin, M. Lambrecht, M. Hernández-Mayoral, F. Bergner, L. Malerba, P. Pareige, B. Radiguet, A. Barbu, D. Gómez-Briceño, A. Ulbricht, and A. Almazouzi: J. Nucl. Mater., 2010, vol. 406, pp. 73–83.

    Article  CAS  Google Scholar 

  13. P. Auger, P. Pareige, M. Akamatsu, and J.C. Van Duysen: J. Nucl. Mater., 1994, vol. 211, pp. 194–201.

    Article  CAS  Google Scholar 

  14. P. Auger, P. Pareige, M. Akamatsu, and D. Blavette: J. Nucl. Mater., 1995, vol. 225, pp. 225–30.

    Article  CAS  Google Scholar 

  15. N.S.-D. Grande and A. Barbu: Radiat. Effects Defect Solids, 1994, vol. 132, pp. 157–67.

    Article  Google Scholar 

  16. F. Bergner, M. Lambrecht, A. Ulbricht, and A. Almazouzi: J. Nucl. Mater., 2010, vol. 399, pp. 129–36.

    Article  CAS  Google Scholar 

  17. V.V. Slezov: Kinetics of First-Order Phase Transitions, Wiley-VCH, Berlin, 2009.

    Book  Google Scholar 

  18. V.V. Slezov and J. Schmelzer: J. Phys. Chem. Solids, 1994, vol. 55, pp. 243–51.

    Article  CAS  Google Scholar 

  19. R. Kampmann and R. Wagner: Proceedings of Acta-Scripta Metallurgica Conference, 2nd ed., 1984, pp. 91–103.

  20. F. Soisson and C.-C. Fu: Phys. Rev. B, 2007, vol. 76, 214102.

    Article  Google Scholar 

  21. Y. Wang, J. Yin, X. Liu, R. Wang, H. Hou, and J. Wang: Prog. Nat. Sci. Mater., 2017, vol. 27, pp. 460–66.

    Article  Google Scholar 

  22. M.I. Pascuet, N. Castin, C.S. Becquart, and L. Malerba: J. Nucl. Mater., 2011, vol. 412, pp. 106–15.

    Article  CAS  Google Scholar 

  23. F. Soisson, A. Barbu, and G. Martin: Acta Mater., 1996, vol. 44, pp. 3789–3800.

    Article  CAS  Google Scholar 

  24. G. Stechauner and E. Kozeschnik: Acta Mater., 2015, vol. 100, pp. 135–46.

    Article  CAS  Google Scholar 

  25. T. Jourdan, F. Soisson, E. Clouet, and A. Barbu: Acta Mater., 2010, vol. 58, pp. 3400–05.

    Article  CAS  Google Scholar 

  26. S. Cui, M. Mamivand, and D. Morgan: Mater. Des., 2020, vol. 191, 108574.

    Article  CAS  Google Scholar 

  27. M. Volmer: Z. Elektrochem. Angew. Phys. Chem., 1929, vol. 35, pp. 555–61.

    CAS  Google Scholar 

  28. R. Becker and W. Doring: Ann. Phys., 1935, vol. 24, pp. 719–52.

    Article  CAS  Google Scholar 

  29. L. Farkas: Z. Phys. Chem., 1927, vol. 125, pp. 236–42.

    Article  CAS  Google Scholar 

  30. J. Feder, K.C. Russell, J. Lothe, and G.M. Pound: Adv. Phys., 1966, vol. 15, pp. 111–78.

    Article  CAS  Google Scholar 

  31. K.C. Russell: Adv. Colloids Interface Sci., 1980, vol. 13, pp. 205–318.

    Article  CAS  Google Scholar 

  32. E. Clouet: Fundamentals of Modeling for Metals Processing, ASM International, Materials Park, 2009, pp. 203–19.

  33. K. Binder and D. Stauffer: Adv. Phys., 1976, vol. 25, pp. 343–96.

    Article  CAS  Google Scholar 

  34. K. Binder: Phys. Rev. B, 1977, vol. 15, pp. 4425–47.

    Article  CAS  Google Scholar 

  35. P. Warczok, J. Zenisek, and E. Kozeschnik: Comput. Mater. Sci., 2012, vol. 60, pp. 59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, and C.S. Woodward: ACM Trans. Math. Softw., 2005, vol. 31, pp. 363–96.

    Article  Google Scholar 

  37. Z. Tang, M. Hasegawa, Y. Nagai, and M. Saito: Phys. Rev. B, 2002, vol. 65, 195108.

    Article  Google Scholar 

  38. M. Kirk: Technical Basis for the Embrittlement Trend Curve Balloted in the 2014 Revision of ASTM Standard Guide E900, ASTM International, Materials Park, 2014, pp. 56–59.

  39. M.K. Miller, B.D. Wirth, and G.R. Odette: Mater. Sci. Eng. A, 2003, vol. 353, pp. 133–39.

    Article  Google Scholar 

  40. S.M. Kim and W.J.L. Buyers: J. Phys. F Met. Phys., 1978, vol. 8, pp. L103-108.

    Article  CAS  Google Scholar 

  41. B. Jönsson: Z. Metall., 1992, vol. 83, pp. 349–55.

    Google Scholar 

  42. F. Christien and A. Barbu: J. Nucl. Mater., 2004, vol. 324, pp. 90–96.

    Article  CAS  Google Scholar 

  43. L. Messina, M. Nastar, T. Garnier, C. Domain, and P. Olsson: Phys. Rev. B, 2014, vol. 90, 104203.

    Article  Google Scholar 

  44. T.H. Youssef and G. Grais: Scr. Metall., 1975, vol. 9, pp. 603–05.

    Article  CAS  Google Scholar 

  45. G.R. Odette, T. Yamamoto, and D. Klingensmith: Philos. Magn., 2005, vol. 85, pp. 779–97.

    Article  CAS  Google Scholar 

  46. L. Messina, T. Schuler, M. Nastar, M.-C. Marinica, and P. Olsson: Acta Mater., 2020, vol. 191, pp. 166–85.

    Article  CAS  Google Scholar 

  47. H. Mehrer: Diffusion in Solid Metals and Alloys, Springer, New York, 1990.

    Book  Google Scholar 

  48. G. Neumann and C. Tuijn: Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, Pergamon/Elsevier, New York, 2008.

    Google Scholar 

  49. A. Hardouin Duparc, C. Moingeon, N.S.-D. Grande, and A. Barbu: J. Nucl. Mater., 2002, vol. 302(2), pp. 143–55.

    Article  CAS  Google Scholar 

  50. A. Vehanen, P. Hautojärvi, J. Johansson, J. Yli-Kauppila, and P. Moser: Phys. Rev. B, 1982, vol. 25, pp. 762–80.

    Article  CAS  Google Scholar 

  51. X.-M. Bai, H. Ke, Y. Zhang, and B.W. Spencer: J. Nucl. Mater., 2017, vol. 495, pp. 442–54.

    Article  CAS  Google Scholar 

  52. R.G. Faulkner, S. Song, P.E.J. Flewitt, and S.B. Fisher: J. Mater. Sci. Lett., 1997, vol. 16, pp. 1191–94.

    CAS  Google Scholar 

  53. M.K. Miller: Atom Probe Tomography: Analysis at the Atomic Level, Springer, New York, 2012.

  54. J.D. Robson: Acta Mater., 2004, vol. 52, pp. 4669–76.

    Article  CAS  Google Scholar 

  55. G.R. Odette, T. Yamamoto, T.J. Williams, R.K. Nanstad, and C.A. English: J. Nucl. Mater., 2019, vol. 526, 151863.

    Article  CAS  Google Scholar 

  56. M. Perez, M. Dumont, and D. Acevedo-Reyes: Acta Mater., 2008, vol. 56, pp. 2119–32.

    Article  CAS  Google Scholar 

  57. J.D. Shore, M. Holzer, and J.P. Sethna: Phys. Rev. B, 1992, vol. 46, pp. 11376–11404.

    Article  CAS  Google Scholar 

  58. V. Testard, L. Berthier, and W. Kob: J. Chem. Phys., 2014, vol. 140, 164502.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was done at University of Wisconsin-Madison and has been supported by the US Department of Energy Office of Nuclear Energy's Light Water Reactor Sustainability Program, Materials Aging and Degradation Pathway. The author would like to express his cordial thanks to Professor Dane Morgan from University of Wisconsin-Madison for mentorship and Professor G. Robert Odette from University of California, Santa Barbara for helpful discussions related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senlin Cui.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 486 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, S. Modeling of Cu Precipitation in Fe–Cu and Fe–Cu–Mn Alloys Under Neutron and Electron Irradiation. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07357-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07357-0

Navigation