Skip to main content
Log in

Magnetic-Controlled Short Process Preparation Technique for Phosphor Bronze Based on Structure Refinement

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The conventional preparation process for Phosphor bronze typically involves high-temperature long-duration solid solution treatment to address the issue of decreased workability caused by the precipitation of brittle Sn-rich phases during solidification. However, this solid solution treatment consumes significant energy and lowers production efficiency, which should be avoided. Herein, we propose a magnetic-controlled short process preparation technique that eliminates the need for solid solution treatment. This technique utilizes electromagnetic stirring to refine the grains, dendrites, and brittle Sn-rich phases simultaneously, aiming to relax the stress concentration during plastic deformation and then greatly enhance its workability. This resulting structure refinement offers additional grain refinement strengthening and dislocation strengthening during subsequent thermomechanical processing, thereby compensating for the lack of solid solution strengthening caused by the absence of solid solution treatment. As a result, the samples prepared by the magnetic-controlled short process and conventional process have comparable strength. Furthermore, because of the absence of solid solution treatment in the magnetic-controlled short process, the electrical conductivity of the samples exceeds that of those prepared by the conventional process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Hatakeyama, A. Sugawara, T. Tojyo, and K. Ikeda: Mater. Trans., 2002, vol. 43, pp. 2908–12.

    Article  CAS  Google Scholar 

  2. Y. Hishinuma, H. Oguro, H. Taniguchi, and A. Kikuchi: Fusion Eng. Des., 2017, vol. 124, pp. 90–93.

    Article  CAS  Google Scholar 

  3. P. Yang, D.Y. He, W. Shao, Z. Tan, X.Y. Guo, S. Lu, and K. Anton: J. Mater. Res. Technol., 2023, vol. 24, pp. 5476–85.

    Article  CAS  Google Scholar 

  4. S.M. So, K.Y. Kim, S.J. Lee, Y.J. Yu, H.A. Lim, and M.S. Oh: Mater. Sci. Eng. A, 2020, vol. 796, p. 140054.

    Article  CAS  Google Scholar 

  5. H.Q. Li, C.J. Xiang, Z.P. Chen, and M.P. Wang: Mater. Sci. Forum, 2009, vol. 610–613, pp. 202–05.

    Article  Google Scholar 

  6. C.L. Wang, Z.Y. Dong, K. Li, M. Sun, J.L. Wu, K. Wang, G.H. Wu, and W.J. Ding: J. Mater. Process. Technol., 2020, vol. 303, p. 117537.

    Article  Google Scholar 

  7. S. Nafisi, D. Emadi, M.T. Shehata, and R. Ghomashchi: Mater. Sci. Eng. A, 2006, vol. 432, pp. 71–83.

    Article  Google Scholar 

  8. J.H. Wen, Y. Liu, Y.C. Huang, and Y.X. Zhao: J. Alloys Compd., 2023, vol. 960, p. 170725.

    Article  CAS  Google Scholar 

  9. R. Guan, C. Ji, and M.Y. Zhu: Metall. Mater. Trans. B, 2020, vol. 51, pp. 1137–53.

    Article  CAS  Google Scholar 

  10. G. Zimmermann, C. Pickmann, E. Schaberger-Zimmermann, V. Galindo, K. Eckert, and S. Eckert: Materialia, 2018, vol. 3, pp. 326–37.

    Article  CAS  Google Scholar 

  11. Z. Shen, B.F. Zhou, J. Zhong, Y.B. Zhong, T.X. Zheng, L.C. Dong, Y. Zhai, W.L. Ren, Z.S. Lei, and Z.M. Ren: Metall. Mater. Trans. B, 2019, vol. 50, pp. 2111–20.

    Article  CAS  Google Scholar 

  12. S.R. Zhang, J.Q. Shi, L. Zhao, L.G. Chen, Z.Z. Lin, G.P. Tang, P.J. Shi, T.X. Zheng, Y.F. Guo, Q. Li, Z. Shen, B. Ding, and Y.B. Zhong: Mater. Lett., 2022, vol. 328, p. 133097.

    Article  CAS  Google Scholar 

  13. Y.B. Fu and J. Cui: Mater. Sci. Technol., 2014, vol. 30, pp. 370–76.

    Article  ADS  CAS  Google Scholar 

  14. A.A. Coelho: J. Appl. Crystallogr., 2018, vol. 51, pp. 210–18.

    Article  ADS  CAS  Google Scholar 

  15. H.M. Rietveld: Acta Crystallogr., 1967, vol. 22, pp. 151–52.

    Article  CAS  Google Scholar 

  16. L. Jiang, H.D. Fu, C.S. Wang, W.D. Li, and J.X. Xie: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 331–41.

    Article  ADS  Google Scholar 

  17. H.L. He, Y.P. Yi, S.Q. Huang, W.F. Guo, and Y.X. Zhang: J. Mater. Process. Technol., 2020, vol. 278, p. 116506.

    Article  CAS  Google Scholar 

  18. H.T. Jeong and W.J. Kim: J. Mater. Sci. Technol., 2021, vol. 71, pp. 228–40.

    Article  CAS  Google Scholar 

  19. N.N. Liang, J.Z. Liu, S.C. Lin, Y. Wang, J.T. Wang, Y.H. Zhao, and Y.T. Zhu: J. Alloys Compd., 2017, vol. 735, pp. 1389–94.

    Article  Google Scholar 

  20. Q. Lei, Z. Xiao, W.P. Hu, B. Derby, and Z. Li: Mater. Sci. Eng. A, 2017, vol. 697, pp. 37–47.

    Article  CAS  Google Scholar 

  21. P.H.F. Oliveira, D.C.C. Magalhes, M.T. Izumi, O.M. Cintho, A.M. Kliauga, and V.L. Sordi: Mater. Sci. Eng. A, 2021, vol. 813, p. 141154.

    Article  CAS  Google Scholar 

  22. Y.J. Ban, Y.F. Geng, J.R. Hou, Y. Zhang, M. Zhou, Y.L. Jia, B.H. Tian, Y. Liu, X. Li, and A.A. Volinsky: J. Mater. Sci. Technol., 2021, vol. 93, pp. 1–6.

    Article  CAS  Google Scholar 

  23. L.J. Peng, H.F. Xie, G.J. Huang, G.L. Xu, X.Q. Yin, X. Feng, X.J. Mi, and Z. Yang: J. Alloys Compd., 2017, vol. 708, pp. 1096–1102.

    Article  CAS  Google Scholar 

  24. Z. Shen, Z.Z. Lin, P.J. Shi, G.P. Tang, T.X. Zheng, C.M. Liu, Y.F. Guo, and Y.B. Zhong: J. Mater. Sci. Technol., 2021, vol. 110, pp. 187–97.

    Article  Google Scholar 

  25. L.H. Qian, Q.H. Lu, W.J. Kong, and K. Lu: Scripta Mater., 2004, vol. 50, pp. 1407–11.

    Article  CAS  Google Scholar 

  26. W. Zeng, J.W. Xie, D.S. Zhou, Z.Q. Fu, D.L. Zhang, and E.J. Lavernia: J. Alloys Compd., 2018, vol. 745, pp. 55–62.

    Article  CAS  Google Scholar 

  27. L. Tian, I. Anderson, T. Riedemann, and A. Russell: Acta Mater., 2014, vol. 77, pp. 151–61.

    Article  ADS  CAS  Google Scholar 

  28. Z.S. Basinski, J.S. Dugdale, and A. Howie: Philos. Mag., 1963, vol. 8, pp. 1989–97.

    Article  ADS  CAS  Google Scholar 

  29. M.B. Kanoun, S. Goumri-Said, and M. Jaouen: J. Phys. Condens. Matter, 2009, vol. 21, p. 045404.

    Article  ADS  CAS  PubMed  Google Scholar 

  30. X. Qian, D.Y. Wang, Y. Zhang, H.J. Wu, S.J. Pennycook, L. Zhang, P.F.P. Poudeu, and L.D. Zhao: J. Mater. Chem. A, 2020, vol. 8, pp. 5699–5708.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Nos. 51904184, 52274385, 52204392, 52004156, and 52204347), the National Key Research and Development Program of China (No. 2022YFC2904900), and the Science and Technique Commission of Shanghai Municipality (Nos. 13JC14025000 and 15520711000).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biao Ding, Chunmei Liu or Yunbo Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Luo, B., Liang, Y. et al. Magnetic-Controlled Short Process Preparation Technique for Phosphor Bronze Based on Structure Refinement. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07337-4

Navigation