Skip to main content
Log in

Effect of Strain Rate on the Mechanical Behavior of Al-Mg Alloy Under a Pulsed Electric Current

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Electrically assisted forming brings many advantages to the forming processes of metal alloys through microstructure modification by a flowing current. However, the influence of strain rate on these changes and the real value of the stress-drop are not yet specified. In this study, the effect of strain rate on flow stress, material plasticity and, microstructure was analysed for the electrically assisted tension of the 5754-H111 aluminium alloy. Three different strain rates (0.0025, 0.01, and 0.04 s−1) were applied under a pulsed electric current tension. The study showed that at decreasing strain rate, an increase in engineering strain is observed. This effect was explained by the periodic strain-hardening and annealing of the sample under a pulsed electric current. The study also showed the possibility of determining the real value of stress-drop, which occurred when a pulsed current was applied during tension. Finally, applying the current pulses led to a meaningful increase in the material plasticity. Transmission electron microscopy and electron backscatter diffraction were used to identify the microstructural changes. It was shown applying pulsed current allowed a change of the dislocation pattern and its annihilation, resulting from the dynamic recovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Toros, F. Ozturk, and I. Kacar: J. Mater. Process. Technol., 2008, vol. 207, pp. 1–2.

    Article  CAS  Google Scholar 

  2. S.M. Mirfalah-Nasiri, A. Basti, and R. Hashemi: Int. J. Mech. Sci., 2016, vol. 117, pp. 93–101.

    Article  Google Scholar 

  3. W.A. Salandro and J.T. Roth: Proc. ASME Int. Manuf. Sci. Eng. Conf. 2009, MSEC2009, 2009, vol. 2, pp. 599–608.

  4. M.V.N.V. Satyanarayana, A. Kumar, V.K.S. Jain, R. Kumar, and S. Mishra: Arch. Civ. Mech. Eng., 2023, vol. 23, pp. 1–16.

    Google Scholar 

  5. H.R. Dong, X.Q. Li, Y. Li, Y.H. Wang, H.B. Wang, X.Y. Peng, and D.S. Li: Int. J. Adv. Manuf. Technol., 2022, vol. 120, pp. 7079–99.

    Article  Google Scholar 

  6. J.H. Roh, J.J. Seo, S.T. Hong, M.J. Kim, H.N. Han, and J.T. Roth: Int. J. Plast., 2014, vol. 58, pp. 84–99.

    Article  ADS  CAS  Google Scholar 

  7. H.J. Jeong, M.J. Kim, J.W. Park, C.D. Yim, J.J. Kim, O.D. Kwon, P.P. Madakashira, and H.N. Han: Mater. Sci. Eng. A, 2017, vol. 684, pp. 668–76.

    Article  CAS  Google Scholar 

  8. B.H. Xing, T. Huang, K.X. Song, L.J. Xu, N. Xiang, X.W. Chen, and F.X. Chen: J. Mater. Res. Technol., 2022, vol. 21, pp. 1128–40.

    Article  CAS  Google Scholar 

  9. S.T. Hong, Y.H. Jeong, M.N. Chowdhury, D.M. Chun, M.J. Kim, and H.N. Han: CIRP Ann. Manuf. Technol., 2015, vol. 64, pp. 277–80.

    Article  Google Scholar 

  10. J.Y. Liu and K.F. Zhang: Mater. Sci. Technol. (United Kingdom), 2016, vol. 32, pp. 540–46.

    Article  ADS  CAS  Google Scholar 

  11. C.R. Green, T.A. McNeal, and J.T. Roth: in Transactions of the North American Manufacturing Research Institution of SME, Greenville, SC, 2009, pp. 403–10.

  12. S. Fu, H. Liu, N. Qi, B. Wang, Y. Jiang, Z. Chen, T. Hu, and D. Yi: Scr. Mater., 2018, vol. 150, pp. 13–17.

    Article  CAS  Google Scholar 

  13. J. Zhao, G.X. Wang, Y. Dong, and C. Ye: J. Appl. Phys., 2007, https://doi.org/10.1063/1.4998938.

    Article  Google Scholar 

  14. A. Ghiotti, S. Bruschi, E. Simonetto, C. Gennari, I. Calliari, and P. Bariani: CIRP Ann., 2018, vol. 67, pp. 289–92.

    Article  Google Scholar 

  15. X. Zhang, H. Li, M. Zhan, Z. Zheng, J. Gao, and G. Shao: J. Mater. Sci. Technol., 2020, vol. 36, pp. 79–83.

    Article  CAS  Google Scholar 

  16. O.A. Troitskii and V.I. Likhtman: Dokl. Akad. Nauk SSSR, 1963, vol. 148, pp. 332–34.

    CAS  Google Scholar 

  17. M.I. Molotskii: Mater. Sci. Eng. A, 2000, vol. 287, pp. 248–58.

    Article  Google Scholar 

  18. S. Zhao, R. Zhang, Y. Chong, X. Li, A. Abu-Odeh, E. Rothchild, D.C. Chrzan, M. Asta, J.W. Morris, and A.M. Minor: Nat. Mater., 2021, vol. 20, pp. 468–72.

    Article  ADS  CAS  PubMed  Google Scholar 

  19. H. Conrad: Mater. Sci. Eng. A, 2000, vol. 287, pp. 276–87.

    Article  Google Scholar 

  20. X. Li, Q. Zhu, Y. Hong, H. Zheng, J. Wang, J. Wang, and Z. Zhang: Nat. Commun., 2022, vol. 13, pp. 1–9.

    ADS  Google Scholar 

  21. S.J. Kim, S.D. Kim, D. Yoo, J. Lee, Y. Rhyim, and D. Kim: Metall. Mater. Trans. A, 2016, vol. 47, pp. 6368–73.

    Article  CAS  Google Scholar 

  22. W. Kang, I. Beniam, and S.M. Qidwai: Rev. Sci. Instrum, 2016, https://doi.org/10.1063/1.4961663.

    Article  PubMed  Google Scholar 

  23. X. Li, J. Turner, K. Bustillo, and A.M. Minor: Acta Mater., 2022, vol. 223, p. 117461.

    Article  CAS  Google Scholar 

  24. Y.H. Zhu, S. To, W.B. Lee, X.M. Liu, Y.B. Jiang, and G.Y. Tang: Mater. Sci. Eng. A, 2009, vol. 501, pp. 125–32.

    Article  Google Scholar 

  25. B. Kinsey, G. Cullen, A. Jordan, and S. Mates: CIRP Ann. Manuf. Technol., 2013, vol. 62, pp. 279–82.

    Article  Google Scholar 

  26. Y.E. Adamyan, S.I. Krivosheev, S.G. Magazinov, D.I. Alekseev, and I.S. Kolodkin: Proc. 2019 IEEE Conf. Russ. Young Res. Electr. Electron. Eng. ElConRus 2019, 2019, pp. 792–95.

  27. K. Zhao, R. Fan, and L. Wang: J. Mater. Eng. Perform., 2016, vol. 25, pp. 781–89.

    Article  CAS  Google Scholar 

  28. J. Magargee, F. Morestin, and J. Cao: J. Eng. Mater. Technol. Trans. ASME, 2013, vol. 135, pp. 1–10.

    Article  Google Scholar 

  29. A.A. Shibkov, A.A. Denisov, M.A. Zheltov, A.E. Zolotov, and M.F. Gasanov: Mater. Sci. Eng. A, 2014, vol. 610, pp. 338–43.

    Article  CAS  Google Scholar 

  30. M.J. Kim, S. Yoon, S. Park, H.J. Jeong, J.W. Park, K. Kim, J. Jo, T. Heo, S.T. Hong, S.H. Cho, Y.K. Kwon, I.S. Choi, M. Kim, and H.N. Han: Appl. Mater. Today, 2020, vol. 21, p. 100874.

    Article  Google Scholar 

  31. T.J. Grimm and L. Mears: J. Manuf. Process., 2020, vol. 56, pp. 1263–69.

    Article  Google Scholar 

  32. M. Kim, J. Song, and H. Huh: Procedia Eng., 2017, vol. 207, pp. 371–76.

    Article  CAS  Google Scholar 

  33. J.H. Song, J. Lee, I. Hwang, Y.B. Kim, S. Choi, G.A. Lee, and M.J. Kang: Appl. Mech. Mater., 2013, vol. 389, pp. 284–88.

    Article  Google Scholar 

  34. K. Hariharan, M.G. Lee, M.J. Kim, H.N. Han, D. Kim, and S. Choi: Metall. Mater. Trans. A, 2015, vol. 46, pp. 3043–51.

    Article  CAS  Google Scholar 

  35. K. Radwański: Steel Res. Int., 2015, vol. 86, pp. 1379–90.

    Article  Google Scholar 

  36. B. Wang, B. Tang, C. You, Y. Wan, Y. Gao, Z. Chen, L. Lu, C. Liu, and J. Wang: Mater. Sci. Eng. A, 2020, vol. 775, p. 138789.

    Article  CAS  Google Scholar 

  37. H. Wang, W. Song, K. Koenigsmann, S. Zhang, L. Ren, and K. Yang: Mater. Des., 2020, vol. 188, p. 108475.

    Article  CAS  Google Scholar 

  38. M.J. Kim, K. Lee, K.H. Oh, I.S. Choi, H.H. Yu, S.T. Hong, and H.N. Han: Scr. Mater., 2014, vol. 75, pp. 58–61.

    Article  ADS  CAS  Google Scholar 

  39. H. Xu, X. Liu, D. Zhang, and X. Zhang: J. Mater. Sci. Technol., 2019, vol. 35, pp. 1108–12.

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Science Centre (Grant. No. 2022/45/N/ST8/03048).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DD; Investigation: DD, MZ, MD; Methodology: DD, ZZ; Validation: ZZ, MZ, MD; Visualization: DD; Writing-Original Draft: DD; Writing-Review and Editing: ZZ, MZ, MD

Corresponding author

Correspondence to Daniel Dobras.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobras, D., Zimniak, Z., Zwierzchowski, M. et al. Effect of Strain Rate on the Mechanical Behavior of Al-Mg Alloy Under a Pulsed Electric Current. Metall Mater Trans A 55, 1284–1294 (2024). https://doi.org/10.1007/s11661-024-07335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-024-07335-6

Navigation