Skip to main content
Log in

Phase Selection and Microstructure Evolution in Laser Additive Manufactured Ni-Based Hardfacing Alloy Bush

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nickel-based hardfacing alloy bushes are used in dynamic moving components inside fast breeder reactors. Due to the difficulties associated with their fabrication through casting or weld deposition, laser rapid manufacturing (LRM) was attempted. In this work, microstructure development and phase selection in laser additive manufactured Ni-based hardfacing alloy bushes are investigated. The as-fabricated bushes had a uniform, defect-free microstructure perpendicular to the material build direction, whereas microstructural heterogeneity could be detected parallel to the build direction due to coarsening of precipitates. Overall microstructure was dominated by γ-Ni, γ-Ni + Ni3B anomalous and lamellar eutectic and Ni–B–Si lamellar eutectic constituents. In addition, Cr-rich borides and carbides were also found. Phase property diagrams and Scheil’s non-equilibrium solidification simulated using ThermoCalc® provided supporting insights into the phase selection phenomena under rapid cooling conditions. Microstructure of LRM Ni-based hardfacing alloy bushes was quite distinct from weld deposited ones and is analyzed in terms of a non-equilibrium eutectic solidification reaction occurring in Ni–Cr–B–C–Si–Fe multicomponent alloy system due to rapid cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A.K. Bhaduri, R. Indira, S.K. Albert, B.P.C. Rao, S.C. Jain, and S. Ashok Kumar: J. Nucl. Mater., 2004, vol. 334, pp. 109–14. https://doi.org/10.1016/j.jnucmat.2004.05.005.

    Article  CAS  Google Scholar 

  2. S. Balaguru and M. Gupta: J. Mater. Res. Technol., 2021, vol. 10, pp. 1210–42. https://doi.org/10.1016/j.jmrt.2020.12.026.

    Article  CAS  Google Scholar 

  3. ASM International: ASM Metals Handbook, vol. 6, 9th ed., ASM International, Materials Park, OH, USA, 1993, pp. 794–95.

  4. M. Corchia, P. Delogu, F. Nenci, A. Belmondo, S. Corcoruto, and W. Stabielli: Wear, 1987, vol. 119, pp. 137–52. https://doi.org/10.1016/0043-1648(87)90105-0.

    Article  CAS  Google Scholar 

  5. T. Liyanage, G. Fisher, and A.P. Gerlich: Surf. Coat. Technol., 2010, vol. 205, pp. 759–65. https://doi.org/10.1016/j.surfcoat.2010.07.095.

    Article  CAS  Google Scholar 

  6. R. Kaul, P. Ganesh, S.K. Albert, A. Jaiswal, N.P. Lalla, A. Gupta, C.P. Paul, and A.K. Nath: Surf. Eng., 2003, vol. 19, pp. 269–73. https://doi.org/10.1179/026708403322499182.

    Article  CAS  Google Scholar 

  7. Q. Ming, L.C. Lim, and Z.D. Chen: Surf. Coat. Technol., 1998, vol. 106, pp. 183–92. https://doi.org/10.1016/S0257-8972(98)00525-8.

    Article  Google Scholar 

  8. S. Gnanasekaran, G. Padmanaban, V. Balasubramanian, H. Kumar, and S.K. Albert: High Temp. Mater. Process., 2019, vol. 38, pp. 16–29. https://doi.org/10.1515/htmp-2017-0176.

    Article  CAS  Google Scholar 

  9. I. Hemmati, V. Ocelík, K. Csach, and J.T.M. De Hosson: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 878–92. https://doi.org/10.1007/s11661-013-2004-4.

    Article  CAS  Google Scholar 

  10. G. Xu, M. Kutsuna, Z. Liu, and H. Zhang: Mater. Sci. Eng. A, 2006, vol. 417, pp. 63–72. https://doi.org/10.1016/j.msea.2005.08.192.

    Article  CAS  Google Scholar 

  11. R. González, M.A. García, I. Penuelas, M. Cadenas, M. del Rocío Fernández, A.H. Battez, and D. Felgueroso: Wear, 2007, vol. 263, pp. 619–24. https://doi.org/10.1016/j.wear.2007.01.094.

    Article  CAS  Google Scholar 

  12. Q. Li, D. Zhang, T. Lei, C. Chen, and W. Chen: Surf. Coat. Technol., 2001, vol. 137, pp. 122–35. https://doi.org/10.1016/S0257-8972(00)00732-5.

    Article  CAS  Google Scholar 

  13. L.J. da Silva, C.J. Scheuer, and A.S.C.M. D’Oliveira: Wear, 2019, vol. 428–29, pp. 387–94. https://doi.org/10.1016/j.wear.2019.04.005.

    Article  CAS  Google Scholar 

  14. I. Hemmati, J.C. Rao, V. Ocelík, and J.T.M. De Hosson: Microsc. Microanal., 2013, vol. 19, pp. 120–31. https://doi.org/10.1017/S1431927612013839.

    Article  CAS  Google Scholar 

  15. K.F. Tam, F.T. Cheng, and H.C. Man: Surf. Coat. Technol., 2002, vol. 149, pp. 36–44. https://doi.org/10.1016/S0257-8972(01)01414-1.

    Article  CAS  Google Scholar 

  16. I. Hemmati, V. Ocelík, and J.T.M. De Hosson: Phys. Procedia, 2013, vol. 41, pp. 302–11. https://doi.org/10.1016/j.phpro.2013.03.082.

    Article  CAS  Google Scholar 

  17. J.C. Pereira, M.C. Taboada, A. Niklas, E. Rayón, and J. Rocchi: J. Manuf. Mater. Process., 2023, vol. 7, pp. 110–30. https://doi.org/10.3390/jmmp7030110.

    Article  CAS  Google Scholar 

  18. H.J. Kim and Y.J. Kim: Surf. Eng., 1999, vol. 15, pp. 495–501. https://doi.org/10.1179/026708499101516911.

    Article  CAS  Google Scholar 

  19. S. Lebaili, M. Durand-Charre, and S. Hamar-Thibault: J. Mater. Sci., 1988, vol. 23, pp. 3603–11. https://doi.org/10.1007/BF00540502.

    Article  CAS  Google Scholar 

  20. G. Chakraborty, R. Rani, R. Ramaseshan, M.A. Davinci, C.R. Das, T. Mathews, and S.K. Albert: Tribol. Trans., 2021, vol. 64, pp. 658–66. https://doi.org/10.1080/10402004.2021.1896059.

    Article  CAS  Google Scholar 

  21. V. Ramasubbu, G. Chakraborty, S.K. Albert, and A.K. Bhaduri: Mater. Sci. Technol., 2009, vol. 27, pp. 573–80. https://doi.org/10.1179/026708309X12526555493431.

    Article  CAS  Google Scholar 

  22. C.R. Das, S.K. Albert, A.K. Bhaduri, and R. Nithya: Mater. Sci. Technol., 2007, vol. 23, pp. 771–79. https://doi.org/10.1179/174328407X185802.

    Article  CAS  Google Scholar 

  23. G. Chakraborty, N. Kumar, C.R. Das, S.K. Albert, A.K. Bhaduri, S. Dash, and A.K. Tyagi: Surf. Coat. Technol., 2014, vol. 244, pp. 180–88. https://doi.org/10.1016/j.surfcoat.2014.02.013.

    Article  CAS  Google Scholar 

  24. P.R. Reinaldo and A.S.C.M. D’Oliveira: J. Mater. Eng. Perform., 2013, vol. 22, pp. 590–97. https://doi.org/10.1007/s11665-012-0271-7.

    Article  CAS  Google Scholar 

  25. C. Sudha, P. Shankar, R.V. Subba Rao, R. Thirumurugesan, M. Vijayalakshmi, and B. Raj: Surf. Coat. Technol., 2008, vol. 202, pp. 2103–12. https://doi.org/10.1016/j.surfcoat.2007.08.063.

    Article  CAS  Google Scholar 

  26. G. Chakraborty, S.K. Albert, and A.K. Bhaduri: Mater. Sci. Technol., 2012, vol. 28, pp. 454–59. https://doi.org/10.1179/1743284711Y.0000000082.

    Article  CAS  Google Scholar 

  27. L.J. da Silva and A.S.C.M. D’Oliveira: Wear, 2016, vol. 350–51, pp. 130–40. https://doi.org/10.1016/j.wear.2016.01.015.

    Article  CAS  Google Scholar 

  28. S. Balaguru, V. Murali, P. Chellapandi, and M. Gupta: Nucl. Eng. Technol., 2020, vol. 52, pp. 589–96. https://doi.org/10.1016/j.net.2019.08.011.

    Article  CAS  Google Scholar 

  29. C.R. Das, S.K. Albert, A.K. Bhaduri, and G. Kempulraj: J. Mater. Process. Technol., 2003, vol. 141, pp. 60–66. https://doi.org/10.1016/S0924-0136(02)01130-5.

    Article  CAS  Google Scholar 

  30. C.P. Paul, A. Jain, P. Ganesh, J. Negi, and A.K. Nath: Opt. Lasers Eng., 2006, vol. 44, pp. 1096–1109. https://doi.org/10.1016/j.optlaseng.2005.08.005.

    Article  Google Scholar 

  31. ICDD database, https://www.icdd.com. Accessed 2 June 2022.

  32. S. Ômori, Y. Hashimoto, S. Nakamura, K. Hidaka, and Y. Kohira: J. Jpn. Soc. Powder Metall., 1971, vol. 18, pp. 132–35. https://doi.org/10.2497/jjspm.18.132.

    Article  Google Scholar 

  33. K.L. Fraga-Chávez, M.J. Castro-Román, M. Herrera-Trejo, L.E. Ramírez-Vidaurri, and I. Aguilera-Luna: Metals, 2017, vol. 7, pp. 187–202. https://doi.org/10.3390/met7060187.

    Article  CAS  Google Scholar 

  34. T.A.M. Haemers, D.G. Rickerby, F. Lanza, F. Geiger, and E.J. Mittemeijer: J. Mater. Sci., 2000, vol. 35, pp. 5691–98. https://doi.org/10.1023/A:1004858508274.

    Article  CAS  Google Scholar 

  35. J. Ajao and S. Hamar Thibault: J. Mater. Sci., 1988, vol. 23, pp. 1112–25. https://doi.org/10.1007/BF01154022.

    Article  CAS  Google Scholar 

  36. L.Y. Chen, T. Xu, H. Wang, P. Sang, S. Lu, Z.X. Wang, S. Chen, and L.C. Zhang: Surf. Coat. Technol., 2019, vol. 358, pp. 467–80. https://doi.org/10.1016/j.surfcoat.2018.11.019.

    Article  CAS  Google Scholar 

  37. A. Prince: Alloy Phase Equilibria, Elsevier Publications, New York, 1966, pp. 173–98.

    Google Scholar 

  38. L.Y. Chen, H. Wang, C. Zhao, S. Lu, Z.X. Wang, J. Sha, S. Chen, and L.C. Zhang: Surf. Coat. Technol., 2019, vol. 369, pp. 31–43. https://doi.org/10.1016/j.surfcoat.2019.04.052.

    Article  CAS  Google Scholar 

  39. E.E. Kornienko, A.A. Nikulina, A.G. Bannov, and A.S. Ivashutenko: Met. Sci. Heat Treat., 2022, vol. 63, pp. 637–43. https://doi.org/10.1007/s11041-022-00742-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge Dr. S. Raju, former Director MMG; Dr. John Philip, Associate Director MMG; Dr. R. Divakar, Director MMG; and Dr. B. Venkatraman, Director IGCAR for their constant support and encouragement during the course of this work.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Haribabu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haribabu, S., Sudha, C., Paul, C.P. et al. Phase Selection and Microstructure Evolution in Laser Additive Manufactured Ni-Based Hardfacing Alloy Bush. Metall Mater Trans A 55, 218–231 (2024). https://doi.org/10.1007/s11661-023-07244-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07244-0

Navigation