Skip to main content
Log in

Effect of Grain Size on the Heat-Affected Zone (HAZ) Cracking Susceptibility in Ni Base XH67 Superalloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

XH67 is a high-nickel superalloy used in high-pressure, oxygen-rich environment of rocket engine components, in view of its excellent ignition resistance over conventional superalloys. This alloy has complex chemistry and is strengthened by a combination of solid-solution strengthening (by Cr, Mo, W, and Fe), dispersion hardening (carbides of Cr and Ti in γ matrix), and precipitation hardening (γ′—Ni3(Ti, Al)) in solution-treated and aged condition. During the course of manufacturing process of rocket components, this material is subjected to multiple thermo-mechanical cycles during multi-stage forming operations followed by high-temperature annealing cycles, multi-pass welding, post-weld heat treatment, and during sintering of ignition-resistant metal-ceramic coating, which lead to alteration of its initial grain size. In this study, XH67 alloy with two different grain sizes of ~ 184 and ~ 79 μm has been subjected to simulation of HAZ conditions at various peak temperatures in the range of 1000 °C to 1250 °C with one to four number of weld passes using a Gleeble-3800 thermo-mechanical simulator to assess the heat-affected zone (HAZ) cracking susceptibility. Optical microscopy revealed the presence of cracks in both coarse and fine-grained materials after HAZ simulation for certain combinations of peak temperature and number of passes. Scanning electron microscopy along with energy-dispersive spectroscopy revealed the locations of cracks to be rich in Ti, Cr, and C, suggesting formation of eutectics. During HAZ simulation, the coarse-grained material could withstand multiple passes (4 cycles) up to a temperature of 1050 °C without formation of any defects, whereas the fine-grained material withstood up to 1150 °C without the formation of defects, even after 4 passes. Mechanical properties of defect-free specimens after HAZ simulation were evaluated, and fractography of tested specimens revealed that the coarse grain samples failed with brittle intergranular fracture, whereas the fine grain samples failed through ductile failure. The results of this study that help in mitigating the HAZ-cracking susceptibility and identifying the number of passes before defects are generated, during multi-pass welding of complex nickel-based superalloys with a given grain size, through simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. R.C. Reed: The Superalloys Fundanmentals and Applications, 1st ed. Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  2. E. Akca and A. Gürsel: Period. Eng. Nat. Sci., 2015, https://doi.org/10.21533/pen.v3i1.43.

    Article  Google Scholar 

  3. G. Lucacci: Steels and Alloys for Turbine Blades in Ultra-Supercritical Power Plants, Elsevier, New York, 2017.

    Book  Google Scholar 

  4. K.L. Kruger: HAYNES 282 Alloy, Elsevier, New York, 2017.

    Book  Google Scholar 

  5. A. Di Gianfrancesco: Mater. Ultra-Supercrit. Adv. Ultra-Supercrit. Power Plants, 2017, https://doi.org/10.1016/B978-0-08-100552-1.00019-1.

    Article  Google Scholar 

  6. J.J. de Barbadillo: INCONEL Alloy 740H, vol. 740, Elsevier, New York, 2017.

    Google Scholar 

  7. A. Di Gianfrancesco: New Japanese Materials for A-USC Power Plants, Elsevier, New York, 2017.

    Book  Google Scholar 

  8. S.E. Atabay, O. Sanchez-Mata, J.A. Muñiz-Lerma, and M. Brochu: Mater. Sci. Eng. A, 2021, https://doi.org/10.1016/j.msea.2021.142053.

    Article  Google Scholar 

  9. A.P. Mouritz, ed.: in Introduction to Aerospace Materials, Elsevier, New York, 2012, pp. 251–67.

  10. S. Wu, H.Y. Song, H.Z. Peng, P.D. Hodgson, H. Wang, X.H. Wu, Y.M. Zhu, M.C. Lam, and A.J. Huang: Acta Mater., 2021, https://doi.org/10.1016/j.actamat.2021.117528.

    Article  Google Scholar 

  11. P.R. Gradl and C.S. Protz: Acta Astronaut., 2020, vol. 174, pp. 148–58.

    Article  CAS  Google Scholar 

  12. I. Waugh, E. Moore, A. Greig, J. Macfarlane, and W. Dick-cleland: SP2020 Virtual Conf. 17-19 March, 2021, pp. 1–9.

  13. Adrian P. Mouritz, ed.: in Introduction to Aerospace Materials, Elsevier, New York, 2012, pp. 39–56.

  14. G. Xu, C. Wu, Z. Liu, Y. Wang, Z. Zhang, Y. Li, and P. Hu: J. Miner. Mater. Charact. Eng., 2021, vol. 09, pp. 566–89.

    CAS  Google Scholar 

  15. M. Aqeel, S.M. Shariff, J.P. Gautam, and G. Padmanabham: Mater. Manuf. Process., 2021, vol. 36, pp. 904–15.

    Article  CAS  Google Scholar 

  16. V. Sklenička, K. Kuchařová, M. Svoboda, M. Kvapilová, P. Král, and J. Dvořák: Int. J. Press. Vessel. Pip., 2019, vol. 178, 104000.

    Article  Google Scholar 

  17. I.V. Kireeva, Y.I. Chumlyakov, Z.V. Pobedennaya, and A.V. Vyrodova: Mater. Sci. Eng. A, 2020, vol. 772, 138772.

    Article  CAS  Google Scholar 

  18. N.T.B.N. Koundinya, K.S. Bharadwaj, E.N. Kumar, S.V.S.N. Murty, and R.S. Kottada: Mater. Perform. Charact., 2020, vol. 9, p. 20190110.

    Article  Google Scholar 

  19. L. Shao, G. Xie, C. Zhang, X. Liu, W. Lu, G. He, and J. Huang: Metals (Basel), 2020, vol. 10, pp. 1–4.

    Google Scholar 

  20. K. Jalaja, V.S.K. Chakravadhanula, S.K. Manwatkar, and S.V.S. Narayana Murty: Metallogr. Microstruct. Anal., 2021, vol. 10, pp. 257–65.

  21. J.L. Caron and J.W. Sowards: Weldability of Nickel-Base Alloys, vol. 6, 2014.

  22. S. Kou: Welding Metallurgy, 2nd ed. Wiley, Hoboken, NJ, 2002.

    Book  Google Scholar 

  23. X. Ye, X. Hua, M. Wang, and S. Lou: J. Mater. Process. Technol., 2015, vol. 222, pp. 381–90.

    Article  CAS  Google Scholar 

  24. S. Li, K. Li, M. Hu, Y. Wu, Z. Cai, and J. Pan: Metals (Basel)., 2020, https://doi.org/10.3390/met10010094.

    Article  Google Scholar 

  25. W. Liu, F. Lu, R. Yang, X. Tang, and H. Cui: J. Mater. Process. Technol., 2015, vol. 225, pp. 221–28.

    Article  CAS  Google Scholar 

  26. F. Yan, C. Hu, X. Zhang, Y. Cai, C. Wang, J. Wang, and X. Hu: Opt. Laser Technol., 2017, vol. 92, pp. 44–51.

    Article  CAS  Google Scholar 

  27. B.G. Muralidharan, V. Shankar, and T.P.S. Gill: Indira Gandhi Cent. At. Res., 1996, pp. 1–62.

  28. S. Singh, K. Kadoi, O. Ojo, B. Alexandrov, and J. Andersson: Mater. Des., 2023, vol. 228, 111853.

    Article  CAS  Google Scholar 

  29. J. Xu, X. Lin, Y. Zhao, P. Guo, X. Wen, Q. Li, H. Yang, H. Dong, L. Xue, and W. Huang: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 5118–36.

    Article  Google Scholar 

  30. S. Papaefthymiou, M. Bouzouni, and R. Petrov: Metals (Basel), 2018, vol. 8, p. 646.

    Article  Google Scholar 

  31. D. M., H.C. Dey, C.R. Das, V. M., and S.K. Albert: J. Manuf. Process., 2021, vol. 68, pp. 1714–25.

  32. T.-C. Chen: Metals (Basel). https://doi.org/10.3390/met8060387.

  33. O.A. Idowu, O.A. Ojo, and M. Chaturvedi: Weld. J. (Miami, FL), 2009, vol. 88, pp. 179s–87s.

  34. O.T. Ola, O.A. Ojo, and M.C. Chaturvedi: Mater. Sci. Technol. (UK), 2014, vol. 30, pp. 1461–69.

    Article  CAS  Google Scholar 

  35. A. Mashhuriazar, C.H. Gur, Z. Sajuri, and H. Omidvar: J. Mater. Res. Technol., 2021, vol. 15, pp. 1590–603.

    Article  CAS  Google Scholar 

  36. N. Coniglio and C.E. Cross: Int. J. Adv. Manuf. Technol., 2020, vol. 107, pp. 5025–38.

    Article  Google Scholar 

  37. S. Singh and J. Andersson: Metals (Basel), 2019, https://doi.org/10.3390/met10010029.

    Article  Google Scholar 

  38. D. Rosenthal: Weld. J., 1941, vol. 20, pp. 220–34.

    Google Scholar 

  39. M. Jafarzadegan, R. Taghiabadi, and M.A. Mofid: Mater. Today Commun., 2022, vol. 31, 103411.

    Article  CAS  Google Scholar 

  40. R. Gupta and V.S. Raja: Mater. Sci. Eng. A, 2020, vol. 774, 138911.

    Article  CAS  Google Scholar 

  41. W.J. Poole, M. Militzer, and T. Garcin: Mater. Join., 2012, vol. 3, pp. 301–06.

    Google Scholar 

  42. I. Woo, K. Nishimoto, K. Tanaka, and M. Shirai: Weld. Int., 2000, vol. 14, pp. 514–22.

    Article  Google Scholar 

  43. R.G. Thompson, J.J. Cassimus, D.E. Mayo, and J.R. Dobbs: Weld. J. (Miami, Fla), 1985, vol. 64, pp. 191–6.

    Google Scholar 

  44. H.R. Abedi and O.A. Ojo: Mater. Sci. Eng. A, 2022, vol. 851, 143618.

    Article  CAS  Google Scholar 

  45. J. Jacobsson, J. Andersson, A. Brederholm, and H. Hänninen: Res. Rev. J. Mater. Sci., 2016, vol. 4, pp. 3–11.

    Google Scholar 

  46. Z. Li, Z. Wu, Y. Cai, and L. Pan: Metals (Basel), 2020, vol. 10, p. 94.

    Article  CAS  Google Scholar 

  47. F. Yan, S. Liu, C. Hu, C. Wang, and X. Hu: J. Mater. Process. Technol., 2017, https://doi.org/10.1016/j.jmatprotec.2017.01.018.

    Article  Google Scholar 

  48. M. Qian and J.C. Lippold: Acta Mater., 2003, vol. 51, pp. 3351–61.

    Article  CAS  Google Scholar 

  49. A.K. Jena and M.C. Chaturvedi: J. Mater. Sci., 1984, vol. 19, pp. 3121–39.

    Article  CAS  Google Scholar 

  50. S. Takaki, K. Kawasaki, and Y. Kimura: J. Mater. Process. Technol., 2001, vol. 117, pp. 359–63.

    Article  CAS  Google Scholar 

  51. L. Helis, Y. Toda, T. Hara, H. Miyazaki, and F. Abe: Mater. Sci. Eng. A, 2009, vol. 510–511, pp. 88–94.

    Article  Google Scholar 

  52. H. Guo, M.C. Chaturvedi, and N.L. Richards: Sci. Technol. Weld. Join., 1999, vol. 4, pp. 257–64.

    Article  CAS  Google Scholar 

  53. F. Hanning, G. Singh, and J. Andersson: Adv. Transdiscip. Eng., 2020, vol. 13, pp. 407–16.

    Google Scholar 

  54. I. Woo and K. Nishimoto: Met. Mater. Int., 2001, vol. 7, pp. 241–49.

    Article  CAS  Google Scholar 

  55. C. Cheung, U. Erb, and G. Palumbo: Mater. Sci. Eng. A, 1994, vol. 185, pp. 39–43.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Director, LPSC for granting permission to publish this work. The authors express their sincere thanks to AML/MME, LPSC for providing Gleeble-3800 TMS, UTM and Microscopy facility for carrying out diffusion bonding experiments and characterization. The authors are thankful to ASD, VSSC for giving access to XRD facility.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Ranjan Kumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, R., Kumar, R.R., Santhoshkumar, R. et al. Effect of Grain Size on the Heat-Affected Zone (HAZ) Cracking Susceptibility in Ni Base XH67 Superalloy. Metall Mater Trans A 55, 183–197 (2024). https://doi.org/10.1007/s11661-023-07241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07241-3

Navigation