Skip to main content
Log in

Influence of Volume Fractions and Boundary Conditions on the Predicted Effective Properties of Al/Ni Composites for Industrial Design

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nowadays, experimental and simulation investigations are of importance in industrial design. The influence of volume fractions and boundary conditions on the effective properties of Al/Ni composites is studied in this paper. The composites with modified microstructure were manufactured through a roll bonding process. The microstructural characterizations showed that the elliptical Ni fragments were uniformly distributed within the matrix. Furthermore, the perfect bonding of layers without cracks and voids was achieved. Also, despite the reduction in elongation, with an increase in the volume fraction of Ni, there was an improvement in the elastic modulus, yield, and ultimate strengths of composites. Next, a series of computational experiments were carried out to estimate the elastic properties of composites by using both microstructure-based and artificial RVEs subjected to linear displacement boundary condition (LDBC) and periodic displacement boundary condition (PDBC). The random sequential adsorption (RSA) method was used to automatically generate the artificial RVEs in which the Ni fragments were randomly distributed and were not overlapped. However, the most striking result to emerge from the finite element analysis is that both RVEs could give a successful prediction of the actual macroscopic behavior of the composite. Furthermore, the predicted results of both LDBC and PDBC were relatively similar to the experimentally-obtained ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. A.H. Assari: J. Manuf. Process., 2023, vol. 95, pp. 369–81.

    Article  Google Scholar 

  2. J. Luo, R. Khattinejad, A. Assari, M. Tayyebi, and B. Hamawandi: Crystals, 2023, vol. 13, p. 354.

    Article  CAS  Google Scholar 

  3. G.-Z. Ma, P.-F. He, H.-D. Wang, H.-G. Tian, Li. Zhou, Q.-S. Yong, M. Liu, H.-C. Zhao, and D.-y He: Mater. Des., 2023, vol. 227, p. 111764.

    Article  CAS  Google Scholar 

  4. Z.Y. Zhu, Y.L. Liu, G.Q. Gou, W. Gao, and J. Chen: Sci. Rep., 2021, vol. 11, p. 10020.

    Article  CAS  Google Scholar 

  5. G. Feng, Hu. Bingxu, Y. Wei, Hu. Tao, Z. Li, P. He, Y. Wang, D. Deng, and X. Yang: J. Market. Res., 2022, vol. 19, pp. 3994–4002.

    CAS  Google Scholar 

  6. H. Deng, Y. Chen, Y. Jia, Y. Pang, T. Zhang, S. Wang, and L. Yin: J. Manuf. Process., 2021, vol. 64, pp. 379–91.

    Article  Google Scholar 

  7. X. Tian, Y. Zhao, Gu. Tao, Y. Guo, Xu. Fengqiang, and H. Hou: Mater. Sci. Eng., A, 2022, vol. 849, p. 143485.

    Article  CAS  Google Scholar 

  8. J. Wang, Z. Pan, Y. Wang, L. Wang, Su. Lihong, D. Cuiuri, Y. Zhao, and H. Li: Addit. Manuf., 2020, vol. 34, p. 101240.

    CAS  Google Scholar 

  9. H. Zhang, Y. Xiao, Xu. Ziqi, M. Yang, L. Zhang, L. Yin, S. Chai, G. Wang, L. Zhang, and X. Cai: Intermetallics, 2022, vol. 150, p. 107683.

    Article  CAS  Google Scholar 

  10. L. Shevtsova, V. Mali, A. Bataev, A. Anisimov, and D. Dudina: Mater. Sci. Eng. A, 2020, vol. 773, p. 138882.

    Article  CAS  Google Scholar 

  11. J. Liang, Ye. Liu, S. Yang, X. Yin, S. Chen, and C. Liu: Surf. Coat. Technol., 2022, vol. 445, p. 128727.

    Article  CAS  Google Scholar 

  12. C.S. Kumar, D. Yadav, R. Bauri, and G.J. Ram: Mater. Sci. Eng. A, 2015, vol. 645, pp. 205–12.

    Article  Google Scholar 

  13. T.K. Akopyan, A.S. Aleshchenko, N.A. Belov, and S.P. Galkin: Phys. Met. Metall., 2018, vol. 119, pp. 241–50.

    Article  CAS  Google Scholar 

  14. J. Liu, Wu. Yuze, H. Gao, C. Kong, and Yu. Hailiang: Metall. Mater. Trans. A, 2023, vol. 54, pp. 16–22.

    Article  CAS  Google Scholar 

  15. N.M. Anas, B.K. Dhindaw, H. Zuhailawati, T.K. Abdullah, and A.S. Anasyida: J. Mater. Eng. Perform., 2018, vol. 27, pp. 6206–217.

    Article  CAS  Google Scholar 

  16. M. Naderi, M. Peterlechner, S.V. Divinski, and G. Wilde: Mater. Sci. Eng. A, 2017, vol. 708, pp. 171–80.

    Article  CAS  Google Scholar 

  17. Y. Yan, Y. Qi, Q.-W. Jiang, and X.-W. Li: Acta Metall. Sin. (Eng. Lett.), 2015, vol. 28, pp. 531–41.

    Article  CAS  Google Scholar 

  18. S.A. Zakaria, A.S. Anasyida, H. Zuhailawati, B.K. Dhindaw, N.A. Jabit, and A. Ismail: Trans. Nonferrous Met. Soc. China, 2021, vol. 31, pp. 2949–61.

    Article  CAS  Google Scholar 

  19. A.P. Zhilyaev, M.J. Torres, H.D. Cadena, S.L. Rodriguez, J. Calvo, and J.M. Cabrera: Materials, 2020, vol. 13, p. 2361.

    Article  CAS  Google Scholar 

  20. K. Chandra Sekhar, R. Narayanasamy, and K. Velmanirajan: Mater. Design, 2014, vol. 53, pp. 1064–70.

    Article  CAS  Google Scholar 

  21. V. Turlo and T.J. Rupert: Acta Mater., 2018, vol. 151, pp. 100–1.

    Article  CAS  Google Scholar 

  22. S.E. Ahmed, W. Al-Kouz, and A.M. Aly: ZAMM J. Appl. Math. Mech., 2023, vol. 103, p. e202100329.

    Article  Google Scholar 

  23. J. Baili, A. Raza, M. Azab, K. Ali, M.H. El Ouni, H. Haider, and M.A. Farooq: Mech. Adv. Mater. Struct., 2023, vol. 30, pp. 4913–32.

    Article  Google Scholar 

  24. M. Berradia, M. Azab, Z. Ahmad, O. Accouche, A. Raza, and Y. Alashker: Struct. Eng. Mech., 2022, vol. 83, pp. 515–35.

    Google Scholar 

  25. M. Moustafa, G. Laouini, and T. Alzoubi: Arch. Acoust. 2021, pp. 419-26-19-26.

  26. G. Yan, A. Shawabkeh, R. Chaturvedi, R. Nur-Firyal, and M.M. Youshanlouei: Case Stud. Thermal Engi., 2022, vol. 36, p. 102153.

    Article  Google Scholar 

  27. N. El Hassan, K. Jabbour, A.H. Fakeeha, Y. Nasr, M.A. Naeem, S.B. Alreshaidan, and A.S. Al-Fatesh: Alex. Eng. J., 2023, vol. 63, pp. 143–55.

    Article  Google Scholar 

  28. M.K. Hassanzadeh-Aghdam and J. Jamali: Proc. Inst. Mech. Eng. Part C, 2022, vol. 236, pp. 8012–26.

    Article  CAS  Google Scholar 

  29. S.K. Mert, M. Demiral, M. Altin, E. Acar, and M.A. Güler: J. Braz. Soc. Mech. Sci. Eng., 2021, vol. 43, pp. 1–22.

    Article  Google Scholar 

  30. M.T. Nasri, F. Abbassi, F. Ahmad, W. Makhloufi, M. Ayadi, H. Mehboob, and H.S. Choi: Mech. Adv. Mater. Struct., 2023, vol. 30, pp. 2087–100.

    Article  CAS  Google Scholar 

  31. M. Sherri, I. Boulkaibet, T. Marwala, and M.I. Friswell: In Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics 2021, Springer: 2022, pp 163–74.

  32. Y. Zhao: Npj Comput. Mater., 2023, vol. 9, p. 94.

    Article  Google Scholar 

  33. S. Bargmann, B. Klusemann, J. Markmann, J.E. Schnabel, K. Schneider, C. Soyarslan, and J. Wilmers: Prog. Mater. Sci., 2018, vol. 96, pp. 322–84.

    Article  Google Scholar 

  34. A. El Moumen, T. Kanit, A. Imad, and H. El Minor: Mech. Mater., 2015, vol. 83, pp. 1–6.

    Article  Google Scholar 

  35. I.M. Gitman, H. Askes, and L.J. Sluys: Eng. Fract. Mech., 2007, vol. 74, pp. 2518–34.

    Article  Google Scholar 

  36. D. Horny and K. Schulz: J. Mater. Sci., 2022, vol. 57, pp. 8869–889.

    Article  CAS  Google Scholar 

  37. E. Hannachi, K.G. Mahmoud, Y. Slimani, M.I. Sayyed, J. Arayro, and Y. Maghrbi: Crystals, 2023, vol. 13, p. 230.

    Article  CAS  Google Scholar 

  38. J. Fang, Y. Quan, and B. Dong: Int. J. Heat Mass Transf., 2023, vol. 208, p. 124084.

    Article  Google Scholar 

  39. M. Haghgoo, R. Ansari, and M.K. Hassanzadeh-Aghdam: J. Phys. Chem. Solids, 2022, vol. 161, p. 110444.

    Article  CAS  Google Scholar 

  40. L. Chen, Gu. Boqin, J. Tao, and J. Zhou: Compos. Struct., 2019, vol. 216, pp. 279–89.

    Article  Google Scholar 

  41. E. Acar, E.E. Üstün, M.A. Güler, A. Toros, and O. Müştak: Mechanics Based Design of Structures and Machines 2022, pp. 1-22.

  42. F. Ahmad, H. Mehboob, F. Abbassi, J.-W. Hong, J. Zghal, and A. Mehboob: Mech. Adv. Mater. Struct., 2022, vol. 29, pp. 4457–467.

    Article  CAS  Google Scholar 

  43. S. Ghouli, M.R. Ayatollahi, B. Bahrami, and J. Jamali: Theor. Appl. Fract. Mech., 2022, vol. 118, p. 103211.

    Article  CAS  Google Scholar 

  44. A. Herez, H. Jaber, H. El Hage, T. Lemenand, K. Chahine, M. Ramadan, and M. Khaled: Int. J. Thermofluids, 2023, vol. 17, p. 100309.

    Article  Google Scholar 

  45. M.A. Kouka, F. Abbassi, M. Demiral, F. Ahmad, M. Soula, and F. Al Housni: Eng. Fract. Mech., 2021, vol. 251, p. 107802.

    Article  Google Scholar 

  46. A. Denisiewicz, M. Kuczma, K. Kula, and T. Socha: Materials, 2021, vol. 14, p. 1009.

    Article  CAS  Google Scholar 

  47. H. Qing: Mater. Des., 2013, vol. 44, pp. 446–53.

    Article  CAS  Google Scholar 

  48. M.M. Shahzamanian, S.S. Akhtar, A.F. Arif, W.J. Basirun, K.S. Al-Athel, M. Schneider, N. Shakelly, A.S. Hakeem, A.A. Abubakar, and P. Wu: Sci. Rep., 2022, vol. 12, p. 11076.

    Article  CAS  Google Scholar 

  49. H.M. Inglis, P.H. Geubelle, and K. Matouš: Philos. Mag., 2008, vol. 88, pp. 2373–97.

    Article  CAS  Google Scholar 

  50. H. Wei, D. Lyu, W. Hu, and C.T. Wu: arXiv preprint arXiv:2210.11761 2022.

  51. F. Otero, S. Oller, and X. Martinez: Arch. Comput. Methods Eng., 2018, vol. 25, pp. 479–505.

    Article  Google Scholar 

  52. Indra Vir Singh, AS Shedbale, and BK Mishra: Journal of composite materials 2016, vol. 50, pp. 2757-71.

  53. T. Inoue, A. Yanagida, and J. Yanagimoto: Mater. Lett., 2013, vol. 106, pp. 37–40.

    Article  CAS  Google Scholar 

  54. D.C. Magalhães, O.M. Cintho, J.B. Rubert, V.L. Sordi, and A.M. Kliauga: Mater. Sci. Eng. A, 2020, vol. 796, p. 140055.

    Article  Google Scholar 

  55. K. Verstraete, A.L. Helbert, F. Brisset, and T. Baudin: In IOP Conference Series: Materials Science and Engineering, IOP Publishing: 2014, p 012090.

  56. S.H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya, and T. Sakai: Scripta Mater., 2002, vol. 46, pp. 281–85.

    Article  CAS  Google Scholar 

  57. K. Brunelli, L. Peruzzo, and M. Dabalà: Mater. Chem. Phys., 2015, vol. 149, pp. 350–58.

    Article  Google Scholar 

  58. X. Guo, Y. Ma, K. Jin, H. Wang, J. Tao, and M. Fan: J. Mater. Eng. Perform., 2017, vol. 26, pp. 4235–244.

    Article  CAS  Google Scholar 

  59. G. Min, J.-M. Lee, S.-B. Kang, and H.-W. Kim: Mater. Lett., 2006, vol. 60, pp. 3255–59.

    Article  CAS  Google Scholar 

  60. H. Wang, Lu. Cheng, K. Tieu, G. Deng, P. Wei, and Yu. Liu: Sci. Rep., 2019, vol. 9, p. 3401.

    Article  Google Scholar 

  61. G.V. Jagadeesh and S.G. Setti: J. Mater. Sci., 2020, vol. 55, pp. 9848–82.

    Article  CAS  Google Scholar 

  62. Izabela B, Andrzej T, Michaà T, and Piotr B: Ann. Wars. Univ. Life Sci. SGGW For. Wood Technol. 2011, vol. 73, pp. 192-98.

  63. S. Ma, X. Zhang, T. Chen, and X. Wang: Mater. Des., 2020, vol. 191, p. 108685.

    Article  CAS  Google Scholar 

  64. M. Kathiresan, K. Manisekar, V. Rajamohan, and M.A. Güler: Mech. Adv. Mater. Struct., 2022, vol. 29, pp. 5360–77.

    Article  CAS  Google Scholar 

  65. J.M. Tyrus, M. Gosz, and E. DeSantiago: Int. J. Solids Struct., 2007, vol. 44, pp. 2972–989.

    Article  Google Scholar 

  66. A. Raza, M. Azab, Z.A. Baki, C. El Hachem, M.H. El Ouni, and N.B. Kahla: Alex. Eng. J., 2023, vol. 64, pp. 451–63.

    Article  Google Scholar 

  67. A. Mamedov: J. Mech. Sci. Technol., 2021, vol. 35, pp. 4143–148.

    Article  Google Scholar 

  68. M.Z. Dehaghani, A. Salmankhani, A.H. Mashhadzadeh, S. Habibzadeh, O. Abida, and M.R. Saeb: Eng. Fract. Mech., 2021, vol. 244, p. 107552.

    Article  Google Scholar 

  69. C. Miehe and A. Koch: Arch. Appl. Mech., 2002, vol. 72, pp. 300–17.

    Article  Google Scholar 

Download references

Data Availability

The raw/processed data required to reproduce these findings cannot be fully shared at this time due to technical or time limitations.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Assari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuanwu, S., Assari, A.H., Yaghoobi, S. et al. Influence of Volume Fractions and Boundary Conditions on the Predicted Effective Properties of Al/Ni Composites for Industrial Design. Metall Mater Trans A 55, 118–133 (2024). https://doi.org/10.1007/s11661-023-07231-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07231-5

Navigation