Skip to main content
Log in

On the Incompatibility of Steady-State Assumption and Abnormal Grain Growth in the Presence of Homogenous Pinning

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Possibility of abnormal grain growth (AGG) is vital when tuning grain structure of polycrystalline materials. The growth stability of a particle-pinned polycrystalline aggregation is discussed. It is mathematically proved that in such aggregation, Hillert’s steady-state normal grain growth assumption is stable against arbitrary perturbation; hence, AGG is impossible as long as pinning is uniform. This conclusion is independent of the detailed pinning mechanism, evolution of pinning strength, or the dimension of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Notes

  1. This does not necessarily imply that no NGG is ongoing in the aggregation e.g., when the particle pinning is coarsening or dissolving.

References

  1. G. Gottstein and L.S. Shvindlerman: Grain boundary Migration in metals: Thermodynamics, Kinetics, Applications, 2nd ed. CRC Press, Boca Raton, 2009.

    Book  Google Scholar 

  2. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed. Elsevier, Amsterdam, 2012.

    Google Scholar 

  3. E.A. Holm and S.M. Foiles: Science, 2010, vol. 328, pp. 1138–41.

    Article  CAS  Google Scholar 

  4. M. Hillert: Acta Metall., 1965, vol. 13, pp. 227–38.

    Article  CAS  Google Scholar 

  5. H.P. Longworth and C. Thompson: J. Appl. Phys., 1991, vol. 69, pp. 3929–40.

    Article  CAS  Google Scholar 

  6. J. Dennis, P.S. Bate, and F.J. Humphreys: Acta Mater., 2009, vol. 57, pp. 4539–47.

    Article  CAS  Google Scholar 

  7. A. Kalinenko, V. Mishin, I. Shishov, S. Malopheyev, I. Zuiko, V. Novikov, S. Mironov, R. Kaibyshev, and S.L. Semiatin: Mater Charact, 2022, vol. 194, p. 112473.

    Article  CAS  Google Scholar 

  8. S.H. Jung, D.Y. Yoon, and S.J.L. Kang: Acta Mater., 2013, vol. 61, pp. 5685–93.

    Article  CAS  Google Scholar 

  9. S.-H. Jung and S.-J.L. Kang: Acta Mater., 2014, vol. 69, pp. 283–91.

    Article  CAS  Google Scholar 

  10. A. Barrios, Y. Zhang, X. Maeder, G. Castelluccio, O. Pierron, and T. Zhu: Scripta Mater., 2022, vol. 209, p. 114372.

    Article  CAS  Google Scholar 

  11. K. Yamanaka, W. Saito, M. Mori, H. Matsumoto, S. Sato, and A. Chiba: Materialia, 2019, vol. 6, p. 100281.

    Article  CAS  Google Scholar 

  12. S. Goel, A. Sittiho, I. Charit, U. Klement, and S. Joshi: Addit. Manuf., 2019, vol. 28, pp. 727–37.

    CAS  Google Scholar 

  13. S. Goel, H. Mehtani, S.-W. Yao, I. Samajdar, U. Klement, and S. Joshi: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 6546–59.

    Article  Google Scholar 

  14. H.-S. Shim, T.-W. Na, J.-S. Chung, S.-B. Kwon, K. Gil, J.-T. Park, and N.-M. Hwang: Scripta Mater., 2016, vol. 116, pp. 71–75.

    Article  CAS  Google Scholar 

  15. F. Fang, Y.X. Zhang, X. Lu, Y. Wang, M.F. Lan, G. Yuan, R.D.K. Misra, and G.D. Wang: Scripta Mater., 2018, vol. 147, pp. 33–36.

    Article  CAS  Google Scholar 

  16. S. Birosca, A. Nadoum, D. Hawezy, F. Robinson, and W. Kockelmann: Acta Mater., 2020, vol. 185, pp. 370–81.

    Article  CAS  Google Scholar 

  17. H.Y. Song, Y.P. Wang, C. Esling, G.D. Wang, and H.T. Liu: Acta Mater., 2021, vol. 206, p. 116611.

    Article  CAS  Google Scholar 

  18. C. Yilmaz, M. Poul, L. Lahn, D. Raabe, and S. Zaefferer: Acta Mater., 2023, vol. 258, p. 119170.

    Article  CAS  Google Scholar 

  19. J. Ciulik and E.M. Taleff: Scripta Mater., 2009, vol. 61, pp. 895–98.

    Article  CAS  Google Scholar 

  20. T. Omori, T. Kusama, S. Kawata, I. Ohnuma, Y. Sutou, Y. Araki, K. Ishida, and R. Kainuma: Science, 2013, vol. 341, pp. 1500–02.

    Article  CAS  Google Scholar 

  21. T. Omori, H. Iwaizako, and R. Kainuma: Mater. Des., 2016, vol. 101, pp. 263–69.

    Article  CAS  Google Scholar 

  22. T. Kusama, T. Omori, T. Saito, S. Kise, T. Tanaka, Y. Araki, and R. Kainuma: Nat. Commun., 2017, vol. 8, p. 354.

    Article  Google Scholar 

  23. P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer, and M.P. Harmer: Acta Mater., 2014, vol. 62, pp. 1–48.

    Article  CAS  Google Scholar 

  24. X. Boulnat, N. Sallez, M. Dade, A. Borbely, J.L. Bechade, Y. de Carlan, J. Malaplate, Y. Brechet, F. de Geuser, A. Deschamps, P. Donnadieu, D. Fabregue, and M. Perez: Acta Mater., 2015, vol. 97, pp. 124–30.

    Article  CAS  Google Scholar 

  25. S.M. Na, K.M. Atwater, and A.B. Flatau: Scripta Mater., 2015, vol. 100, pp. 1–4.

    Article  CAS  Google Scholar 

  26. W.E. Frazier, G.S. Rohrer, and A.D. Rollett: Acta Mater., 2015, vol. 96, pp. 390–98.

    Article  CAS  Google Scholar 

  27. A. Lawrence, J.M. Rickman, M.P. Harmer, and A.D. Rollett: Acta Mater., 2016, vol. 103, pp. 681–87.

    Article  CAS  Google Scholar 

  28. T.W. Na, H.K. Park, C.S. Park, J.T. Park, and N.M. Hwang: Acta Mater., 2016, vol. 115, pp. 224–29.

    Article  CAS  Google Scholar 

  29. N. Lu, J. Kang, N. Senabulya, R. Keinan, N. Gueninchault, and A.J. Shahani: Acta Mater., 2020, vol. 195, pp. 1–12.

    Article  CAS  Google Scholar 

  30. C.J. Marvel, C. Riedel, W.E. Frazier, A.D. Rollett, J.M. Rickman, and M.P. Harmer: Acta Mater., 2022, vol. 239, p. 118262.

    Article  CAS  Google Scholar 

  31. M. Vollmer, S. Degener, A. Bolender, A. Bauer, A. Liehr, A. Stark, N. Schell, P. Barriobero-Vila, G. Requena, and T. Niendorf: Acta Mater., 2023, vol. 257, p. 119168.

    Article  CAS  Google Scholar 

  32. J.E. Burke: Trans. Am. Inst. Min. Metall. Eng., 1949, vol. 180, pp. 73–91.

    Google Scholar 

  33. J.E. Burke and D. Turnbull: Prog. Met. Phys., 1952, vol. 3, pp. 220–92.

    Article  CAS  Google Scholar 

  34. P. Feltham: Acta Metall., 1957, vol. 5, pp. 97–105.

    Article  CAS  Google Scholar 

  35. C.V. Thompson, H.J. Frost, and F. Spaepen: Acta Metall., 1987, vol. 35, pp. 887–90.

    Article  CAS  Google Scholar 

  36. W.W. Mullins: J. Appl. Phys., 1986, vol. 59, pp. 1341–49.

    Article  CAS  Google Scholar 

  37. C.S. Smith: Trans. AIME, 1948, vol. 175, pp. 15–51.

    Google Scholar 

  38. E. Nes, N. Ryum, and O. Hunderi: Acta Metall., 1985, vol. 33, pp. 11–22.

    Article  CAS  Google Scholar 

  39. P.A. Manohar, M. Ferry, and T. Chandra: ISIJ Int., 1998, vol. 38, pp. 913–24.

    Article  CAS  Google Scholar 

  40. C. G. Dunn and J. L. Walter: in Recrystallization, Grain Growth and Textures, ASM, Ohio, 1966, p. 461.

  41. T. Gladman: Proc. R. Soc. Lond. A, 1966, vol. 294, pp. 298–309.

    Article  CAS  Google Scholar 

  42. F. Humphreys: Acta Mater., 1997, vol. 45, pp. 5031–39.

    Article  CAS  Google Scholar 

  43. P.R. Rios: Scripta Mater., 1998, vol. 39, pp. 1725–30.

    Article  CAS  Google Scholar 

  44. P.R. Rios: Acta Mater., 1997, vol. 45, pp. 1785–89.

    Article  CAS  Google Scholar 

  45. P.R. Rios: Acta Metall. Mater., 1994, vol. 42, pp. 839–43.

    Article  Google Scholar 

  46. R. Hyland: Metall. Trans. A, 1992, vol. 23, pp. 1947–55.

    Article  Google Scholar 

  47. Y.W. Riddle and T.H. Sanders: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 341–50.

    Article  CAS  Google Scholar 

  48. M. Ferry, N.E. Hamilton, and F.J. Humphreys: Acta Mater., 2005, vol. 53, pp. 1097–1109.

    Article  CAS  Google Scholar 

  49. H. Chen, Z. Chen, G. Ji, S.Y. Zhong, H.W. Wang, A. Borbely, Y.B. Ke, and Y. Brechet: Int. J. Plast., 2021, vol. 139, p. 102971.

    Article  CAS  Google Scholar 

  50. I. Andersen and Ø. Grong: Acta Metall. Mater., 1995, vol. 43, pp. 2673–88.

    Article  CAS  Google Scholar 

  51. D. Srolovitz, G. Grest, and M. Anderson: Acta Metall., 1985, vol. 33, pp. 2233–47.

    Article  CAS  Google Scholar 

  52. N.P. Louat: Acta Metall., 1974, vol. 22, pp. 721–24.

    Article  CAS  Google Scholar 

  53. O. Hunderi and N. Ryum: Acta Metall., 1982, vol. 30, pp. 739–42.

    Article  CAS  Google Scholar 

  54. D. Srolovitz, M.P. Anderson, P.S. Sahni, and G.S. Grest: Acta Metall., 1984, vol. 32, pp. 793–802.

    Article  CAS  Google Scholar 

  55. V. Yadav and N. Moelans: Scripta Mater., 2018, vol. 142, pp. 148–52.

    Article  CAS  Google Scholar 

  56. A. Bhattacharya, Y.F. Shen, C.M. Hefferan, S.F. Li, J. Lind, R.M. Suter, C.E. Krill 3rd., and G.S. Rohrer: Science, 2021, vol. 374, pp. 189–93.

    Article  CAS  Google Scholar 

Download references

This work was supported by the National Natural Science Foundation of China [Grant Numbers 52101043, 51971137].

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianfeng Li or Zhe Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Nomenclature Table

Appendix A: Nomenclature Table

This appendix briefly summarizes the nomenclature of important symbols that have been used throughout the manuscript, based on their order of appearance in the text.

Table AI Nomenclature Table for Symbols

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Chen, Y., Dan, C. et al. On the Incompatibility of Steady-State Assumption and Abnormal Grain Growth in the Presence of Homogenous Pinning. Metall Mater Trans A 55, 20–25 (2024). https://doi.org/10.1007/s11661-023-07227-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07227-1

Navigation