Skip to main content
Log in

Quantitative Analysis of Three-Dimensional Lamellar Alignment in Pearlitic Steel With Various Pre-processing Using Semi-automatic Habit Plane Analysis

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The three-dimensional lamellar alignment of pearlitic steels pre-processed with cold rolling and drawing before the pearlitic transformation was quantitatively evaluated using a semi-automatic habit plane analysis. The analysis was successfully conducted, although the habit planes were dispersed depending on the geometry of the specimen owing to the cementite (Fe3C) plates interrupting the incident electron beam to the ferrite (α) phase during the electron backscattered diffraction analysis. Pitsch–Petch and Isaichev orientation relationships between α and Fe3C were detected within one block. The block and colony sizes and lamellar spacing were insignificantly changed by pre-processing, however, the α phase texture was differed according to the pre-processing conditions. The rolling texture in the cold-rolled specimen inherited even after heat-treatment. The non-pre-processed specimen exhibited a random lamellar alignment distribution, whereas specific lamellar alignments were accumulated in the pre-processed specimens, strongly suggesting that pre-processing affected the lamellar alignment. The number of colonies in the pre-processed specimens with a lamellar alignment (normal of habit plane) perpendicular to the stress axis during pre-processing tended to be small. The lamellar alignment tended to fit that expected from the texture in pre-processed specimens. The texture and residual stress developed during pre-processing may affect the lamellar alignment in pearlitic steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. I.V. Isaichev: Zh. Tekh. Fiz., 1947, vol. 17, pp. 835–38.

    CAS  Google Scholar 

  2. N.J. Petch: Acta Crystallogr., 1953, vol. 6, p. 96. https://doi.org/10.1107/S0365110X53000260.

    Article  CAS  Google Scholar 

  3. W. Pitsch: Acta Metall., 1962, vol. 10, pp. 79–80. https://doi.org/10.1016/0001-6160(62)90190-6.

    Article  Google Scholar 

  4. Y.A. Bagaryatsky: Dokl. Akad. Nauk SSSR, 1947, vol. 73, pp. 1161–64.

    Google Scholar 

  5. A. Durgaprasad, S. Giri, S. Lenka, S. Kundu, S. Mishra, S. Chandra, R.D. Doherty, and I. Samajdar: Acta Mater., 2017, vol. 129, pp. 278–89. https://doi.org/10.1016/j.actamat.2017.02.008.

    Article  CAS  Google Scholar 

  6. T. Takahashi, M. Nagumo, and Y. Asano: J. Japan Inst., 1978, vol. 42, pp. 716–23. https://doi.org/10.2320/jinstmet1952.42.7_716.

    Article  CAS  Google Scholar 

  7. A. Walentek, M. Seefeldt, B. Verlinden, E. Aernoudt, and P.V. Houtte: J. Microsc., 2006, vol. 224, pp. 256–63. https://doi.org/10.1111/j.1365-2818.2006.01702.x.

    Article  CAS  Google Scholar 

  8. A. Walentek, M. Seefeldt, B. Verlinden, E. Aernoudt, and P.V. Houtte: Mater. Sci. Eng. A, 2008, vol. 483–484, pp. 716–18. https://doi.org/10.1016/j.msea.2006.12.171.

    Article  CAS  Google Scholar 

  9. S. Zaefferer, S.I. Wrightm, and D. Raabe: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 374–89. https://doi.org/10.1007/s11661-007-9418-9.

    Article  CAS  Google Scholar 

  10. T. Takahashi, D. Ponge, and D. Raabe: Steel Res. Int., 2007, vol. 78, pp. 38–44. https://doi.org/10.1002/srin.200705857.

    Article  CAS  Google Scholar 

  11. B. Karlsson and G. Lindén: Mater. Sci. Eng., 1975, vol. 17, pp. 153–64. https://doi.org/10.1016/0025-5416(75)90039-7.

    Article  CAS  Google Scholar 

  12. J.M. Hyzak and I.M. Bernstein: Metal. Trans. A, 1976, vol. 7, pp. 1217–24. https://doi.org/10.1007/BF02656606.

    Article  Google Scholar 

  13. A.M. Elwazri, P. Wanjara, and S. Yue: Mater. Sci. Eng. A, 2005, vol. 404, pp. 91–98. https://doi.org/10.1016/j.msea.2005.05.051.

    Article  CAS  Google Scholar 

  14. A.R. Marder and B.L. Bramfitt: Metal. Trans. A, 1976, vol. 7, pp. 365–72. https://doi.org/10.1007/BF02642832.

    Article  Google Scholar 

  15. N. Nakada, N. Koga, Y. Tanaka, T. Tsuchiyama, S. Takaki, and M. Ueda: ISIJ Int., 2015, vol. 55, pp. 2036–38. https://doi.org/10.2355/isijinternational.ISIJINT-2015-102.

    Article  CAS  Google Scholar 

  16. Y. Ohmori, A.T. Davenport, and R.W.K. Honeycombet: Trans. ISIJ, 1972, vol. 12, pp. 128–37. https://doi.org/10.2355/isijinternational1966.12.128.

    Article  CAS  Google Scholar 

  17. G. Langford: Metal. Trans. A, 1977, vol. 8, pp. 861–75. https://doi.org/10.1007/BF02661567.

    Article  Google Scholar 

  18. Y. Adachi, S. Morooka, K. Nakajima, and Y. Sugimoto: Acta Mater., 2008, vol. 58, pp. 5995–6002.

    Article  Google Scholar 

  19. T. Teshima, M. Kosaka, K. Ushioda, N. Koga, and N. Nakada: Mater. Sci. Eng. A, 2017, vol. 679, pp. 223–29. https://doi.org/10.1016/j.msea.2016.10.018.

    Article  CAS  Google Scholar 

  20. Y. Yajima, N. Koga, and C. Watanabe: Mater Charact, 2021, vol. 177, 111197https://doi.org/10.1016/j.matchar.2021.111197.

    Article  CAS  Google Scholar 

  21. N. Nakada, N. Koga, T. Tsuchiyama, and S. Takaki: Scr. Mater., 2009, vol. 64, pp. 133–36. https://doi.org/10.1016/j.scriptamat.2009.03.028.

    Article  CAS  Google Scholar 

  22. N. Koga, N. Nakada, T. Tsuchiyama, S. Takaki, M. Ojima, and Y. Adachi: Scr. Mater., 2012, vol. 67, pp. 400–03. https://doi.org/10.1016/j.scriptamat.2015.05.034.

    Article  CAS  Google Scholar 

  23. S. Endo, N. Miyazawa, N. Nakada, S. Onaka, T. Teshima, and M. Kosaka: ISIJ Int., 2022, vol. 62, pp. 291–98. https://doi.org/10.2355/isijinternational.ISIJINT-2021-332.

    Article  CAS  Google Scholar 

  24. J.D. Embury and R.M. Fisher: Acta Metall., 1966, vol. 14, pp. 147–59. https://doi.org/10.1016/0001-6160(66)90296-3.

    Article  CAS  Google Scholar 

  25. D. Wei, X. Min, Z. Xie, and F. Fang: Mater. Sci. Eng. A, 2020, vol. 784, 139341https://doi.org/10.1016/j.msea.2020.139341.

    Article  CAS  Google Scholar 

  26. S. Narayanswamy, R. Saha, and P.P. Bhattacharjee: Mater. Char., 2021, vol. 171, 110751https://doi.org/10.1016/j.matchar.2020.110751.

    Article  CAS  Google Scholar 

  27. H. Tashiro and H. Sato: J. Jpn. Inst. Met., 1991, vol. 55, pp. 1078–85. https://doi.org/10.2320/jinstmet1952.55.10_1078.

    Article  CAS  Google Scholar 

  28. M. Hölscher, D. Raabe, and K. Lücke: Steel Res., 1991, vol. 62, pp. 567–75. https://doi.org/10.1002/srin.199100451.

    Article  Google Scholar 

  29. M.R. Barnett and J.J. Jonas: ISIJ Int., 1997, vol. 37, pp. 706–14. https://doi.org/10.2355/isijinternational.37.706.

    Article  CAS  Google Scholar 

  30. F. Fang, Y. Zhao, L. Zhou, X. Hu, Z. Xie, and J. Jiang: Mater. Sci. Eng. A, 2014, vol. 618, pp. 505–10. https://doi.org/10.1016/j.msea.2014.09.061.

    Article  CAS  Google Scholar 

  31. R.J. Dippenaar and R.W.K. Honeycombe: Proc. R. Soc. Lond. A, 1973, vol. 333, pp. 455–67. https://doi.org/10.1098/rspa.1973.0073.

    Article  CAS  Google Scholar 

  32. D.S. Zhou and G.J. Shiflet: Metall. Trans. A, 1992, vol. 23, pp. 1259–69. https://doi.org/10.1007/BF02665057.

    Article  Google Scholar 

  33. N. Gey, B. Petit, and M. Humbert: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3291–99. https://doi.org/10.1007/s11661-005-0003-9.

    Article  CAS  Google Scholar 

  34. G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara: J. Alloys Compds., 2013, vol. 577, pp. S528-532. https://doi.org/10.1016/j.jallcom.2011.12.111.

    Article  CAS  Google Scholar 

  35. Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama, and S. Takaki: ISIJ Int., 2013, vol. 53, pp. 1224–30. https://doi.org/10.2355/isijinternational.53.1224.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JKA and its promotion funds from KEIRIN RACE. The authors also acknowledge the financial support of the Grant-in-Aid for Scientific Research (KAKENHI) Grant No. 23K17815.

Author information

Authors and Affiliations

Authors

Contributions

NK: Investigation, Visualization, Data curation, Writing-original draft, Formal analysis, Writing – review & editing.

Corresponding author

Correspondence to Norimitsu Koga.

Ethics declarations

Conflict of interest

The author declare no conflict of interest.

Ethical Approval

No human tissues were involved in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koga, N. Quantitative Analysis of Three-Dimensional Lamellar Alignment in Pearlitic Steel With Various Pre-processing Using Semi-automatic Habit Plane Analysis. Metall Mater Trans A 54, 4966–4975 (2023). https://doi.org/10.1007/s11661-023-07217-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07217-3

Navigation