Skip to main content
Log in

Interdiffusion in Low-Al Fe–Cr–Al Alloys at 1000 °C

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Interdiffusion coefficients in low-Al Fe–Cr–Al alloys at 1000 °C were experimentally determined by using a diffusion-couple method, and the effects of Cr on the interdiffusion flux of Al were evaluated. The main-term interdiffusion coefficients, \({\widetilde{D}}_{\text{AlAl}}^{\text{Fe}}\) and \({\widetilde{D}}_{\text{CrCr}}^{\text{Fe}}\), decreased with increasing Cr content, and the \({\widetilde{D}}_{\text{AlAl}}^{\text{Fe}}\) values were two to three times greater than the \({\widetilde{D}}_{\text{CrCr}}^{\text{Fe}}\) values. The cross-term interdiffusion coefficient, \({\widetilde{D}}_{\text{AlCr}}^{\text{Fe}}\), was positive, indicating a positive chemical interaction between Cr and Al in the Fe–Cr–Al alloys. \({\widetilde{D}}_{\text{AlCr}}^{\text{Fe}}\) was one order of magnitude smaller than \({\widetilde{D}}_{\text{AlAl}}^{\text{Fe}}\) and decreased with increasing Cr content. Because of the positive \({\widetilde{D}}_{\text{AlCr}}^{\text{Fe}}\) value, when the concentration gradients of Al and Cr had the same sign, the Al interdiffusion flux was increased by Cr and increased with increasing Cr content due to the steeper Cr concentration gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Wagner: Corros. Sci., 1965, vol. 5, pp. 751–64.

    Article  CAS  Google Scholar 

  2. F.H. Stott, G.C. Wood, and J. Stringer: Oxid. Met., 1995, vol. 44, pp. 113–45.

    Article  CAS  Google Scholar 

  3. Z.G. Zhang, F. Gesmundo, P.Y. Hou, and Y. Niu: Corros. Sci., 2006, vol. 48, pp. 741–65.

    Article  CAS  Google Scholar 

  4. P. Tomaszewicz and G.R. Wallwork: Oxid. Met., 1983, vol. 20, pp. 75–109.

    Article  CAS  Google Scholar 

  5. C.S. Giggins and F.S. Pettit: J. Electrochem. Soc., 1971, vol. 118, pp. 1782–90.

    Article  CAS  Google Scholar 

  6. S. Yoneda, S. Hayashi, I. Saeki, and S. Ukai: Oxid. Met., 2016, vol. 86, pp. 357–70.

    Article  CAS  Google Scholar 

  7. S. Yoneda, S. Hayashi, I. Saeki, and S. Ukai: Oxid. Met., 2017, vol. 88, pp. 669–86.

    Article  CAS  Google Scholar 

  8. S. Yoneda, S. Hayashi, and S. Ukai: Oxid. Met., 2018, vol. 89, pp. 81–97.

    Article  CAS  Google Scholar 

  9. D. Rohrberg, K.-H. Spitzer, L. Dörrer, A.J. Kulińska, G. Borchardt, A. Fraczkiwicz, T. Markus, M.H.G. Jacobs, and R.S. Fetzer: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 269–79.

    Article  Google Scholar 

  10. H.C. Akuezue and J. Stringer: Metall. Trans. A, 1989, vol. 20A, pp. 2767–81.

    Article  CAS  Google Scholar 

  11. D.P. Whittle and A. Green: Scripta Mater., 1974, vol. 8, pp. 883–84.

    Article  CAS  Google Scholar 

  12. C. Matano: Jpn. J. Phys., 1933, vol. 8, pp. 109–13.

    CAS  Google Scholar 

  13. M.A. Dayananda: Metall. Trans. A, 1983, vol. 14A, pp. 1851–58.

    Article  CAS  Google Scholar 

  14. J.A. Nesbitt and W. Heckel: Metall. Trans. A, 1987, vol. 18A, pp. 2075–86.

    Article  CAS  Google Scholar 

  15. S. Hayashi, D.J. Sordelet, L.R. Walker, and B. Gleeson: Mater. Trans., 2008, vol. 49, pp. 1550–57.

    Article  CAS  Google Scholar 

  16. L. Onsager: Phys. Rev., 1931, vol. 37, pp. 405–26.

    Article  CAS  Google Scholar 

  17. J.S. Kirkaldy: Adv. Mater. Res., 1970, vol. 4, pp. 50–100.

    Google Scholar 

  18. E. Airiskallio, E. Nurmi, M.H. Heinonen, I.J. Väyrynen, K. Kokko, M. Ropo, M.P.J. Punkkinen, H. Pitkänen, M. Alatalo, J. Kollár, B. Johansson, and L. Vitos: Corros. Sci., 2010, vol. 52, pp. 3394–404.

    Article  CAS  Google Scholar 

  19. K. Hirano and A. Hishinuma: J. Jpn. Met. Mater., 1968, vol. 32, pp. 516–21.

    CAS  Google Scholar 

  20. Y.H. Sohn and M.A. Dayananda: Scripta Mater., 1999, vol. 40, pp. 79–84.

    Article  CAS  Google Scholar 

  21. J. A. Nesbitt, NASA / TM-2000-209271, 2000, pp. 1–42.

  22. J.S. Kirkaldy: Can. J. Phys., 1958, vol. 36, pp. 899–925.

    Article  CAS  Google Scholar 

  23. J. Nesbitt: J. Electrochem. Soc., 1989, vol. 136, pp. 1511–17.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number JP22H01823.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzue Yoneda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoneda, S., Hayashi, S. Interdiffusion in Low-Al Fe–Cr–Al Alloys at 1000 °C. Metall Mater Trans A 54, 4931–4939 (2023). https://doi.org/10.1007/s11661-023-07214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07214-6

Navigation