Skip to main content
Log in

Texture Transformation Induced Grain Fragmentation

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work provided the interpretation of grain fragmentation behaviour of ferritic steel induced by texture transformation during rolling process. Ferritic steel was subjected to differential speed rolling (DSR) with sample rotation of 180 deg along rolling direction between passes. Electron back-scatter diffraction analysis on sample with speed ratio of 1:4 (lower:upper roller) showed that the grains with {001}\(\langle 1\overline{1}0\rangle \) orientation partially rotated into {111}\(\langle \overline{1}\overline{1}2 \rangle \) orientation, which lead to grain fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Y.M. Pohribnaya, V.A. Moskalenko, and I.S. Braude: Low Temp. Phys., 2018, vol. 44, pp. 444–50.

    Article  CAS  Google Scholar 

  2. N. Hansen and R.F. Mehl: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2917–35.

    Article  CAS  Google Scholar 

  3. Y. Cao, S. Ni, X. Liao, M. Song, and Y. Zhu: Mater. Sci. Eng. R, 2018, vol. 133, pp. 1–59.

    Article  Google Scholar 

  4. L.S. Tóth, Y. Estrin, R. Lapovok, and C. Gu: Acta Mater., 2010, vol. 58, pp. 1782–94.

    Article  Google Scholar 

  5. M.D. Nave and M.R. Barnett: ISIJ Int., 2004, vol. 44, pp. 187–96.

    Article  CAS  Google Scholar 

  6. S.S. Dhinwal and L.S. Toth: Mater. Charact., 2020, vol. 169, p. 110578.

    Article  CAS  Google Scholar 

  7. M. Zecevic, R.A. Lebensohn, R.J. McCabe, and M. Knezevic: Int. J. Plast., 2018, vol. 109, pp. 193–211.

    Article  Google Scholar 

  8. S.J. Park, H.N. Han, K.H. Oh, D. Raabe, and J.K. Kim: Mater. Sci. Forum, 2002, vol. 408–412, pp. 371–76.

    Article  Google Scholar 

  9. N. Hansen and D.J. Jensen: Philos. Trans. R. Soc. A, 1999, vol. 357, pp. 1447–69.

    Article  CAS  Google Scholar 

  10. F. Zhang, C. Chen, B. Lv, H. Ma, E. Farabi, and H. Beladi: Mater. Sci. Eng. A, 2019, vol. 743, pp. 251–58.

    Article  CAS  Google Scholar 

  11. R. Quey, P.R. Dawson, and J.H. Driver: J. Mech. Phys. Solids, 2012, vol. 60, pp. 509–24.

    Article  CAS  Google Scholar 

  12. D. Raabe, Z. Zhao, and F. Roters: Scripta Mater., 2004, vol. 50, pp. 1085–90.

    Article  CAS  Google Scholar 

  13. E. Bauer and S. Safikhani: Int. J. Geomech., 2020, vol. 20, pp. 1–13.

    Article  Google Scholar 

  14. L.S. Tóth, B. Beausir, D. Orlov, R. Lapovok, and A. Haldar: J. Mater. Process. Technol., 2012, vol. 212, pp. 509–15.

    Article  Google Scholar 

  15. J.-H. Kang and Y.-G. Ko: Materials (Basel), 2022, vol. 15, p. 3717.

    Article  CAS  Google Scholar 

  16. W. Jiang, H. Zhou, Y. Cao, J. Nie, Y. Li, Y. Zhao, M. Kawasaki, T.G. Langdon, and Y. Zhu: Adv. Eng. Mater., 2020, vol. 22, pp. 14–16.

    Google Scholar 

  17. T. Ogawa, Y. Suzuki, Y. Adachi, A. Yamaguchi, and Y. Matsubara: Materials (Basel), 2022, vol. 15, p. 3083.

    Article  CAS  Google Scholar 

  18. G. Sun, L. Du, J. Hu, and B. Zhang: Mater. Charact., 2020, vol. 159, p. 110073.

    Article  CAS  Google Scholar 

  19. S.H. Lee and D.N. Lee: Int. J. Mech. Sci., 2001, vol. 43, pp. 1997–2015.

    Article  Google Scholar 

  20. Z. Wang, Y. Dong, J. Li, F. Chai, L. Wang, Q. Liu, B. Fu, M. Liu, and Z. Wang: Materials (Basel), 2022, vol. 15, p. 3070.

    Article  CAS  Google Scholar 

  21. Y. Xu, H. Jiao, W. Qiu, R.D.K. Misra, and J. Li: Materials (Basel), 2018, vol. 11, p. 1161.

    Article  Google Scholar 

  22. N. Deeparekha, A. Gupta, M. Demiral, and R.K. Khatirkar: Mech. Mater., 2020, vol. 148, p. 103420.

    Article  Google Scholar 

  23. E.V. Nesterova, B. Bacroix, and C. Teodosiu: Mater. Sci. Eng. A, 2001, vol. 309, pp. 495–99.

    Article  Google Scholar 

  24. D.G. Rodrigues, C.M. De Alcântara, T.R. De Oliveira, and B.M. Gonzalez: J. Mater. Res. Technol., 2019, vol. 8, pp. 4151–62.

    Article  CAS  Google Scholar 

  25. D. Jorge-Badiola, A. Iza-Mendia, and I. Gutiérrez: J. Microsc., 2007, vol. 228, pp. 373–83.

    Article  CAS  Google Scholar 

  26. H. Inagaki: ISIJ Int., 1994, vol. 34, pp. 313–21.

    Article  CAS  Google Scholar 

  27. N. Zhang, L. Meng, W. Zhang, and W. Mao: Crystals, 2020, vol. 10, pp. 1–12.

    Google Scholar 

  28. H. Miyamoto, T. Xiao, T. Uenoya, and M. Hatano: ISIJ Int., 2010, vol. 50, pp. 1653–59.

    Article  CAS  Google Scholar 

  29. K.H. Kim and D.N. Lee: Acta Mater., 2001, vol. 49, pp. 2583–95.

    Article  CAS  Google Scholar 

  30. O. Engler, M.Y. Huh, and C.N. Tomé: Metall. Mater. Trans. A, 2000, vol. 31, pp. 2299–2315.

    Article  Google Scholar 

  31. S.H. Lee and D.N. Lee: Mater. Sci. Eng. A, 1998, vol. 249, pp. 84–90.

    Article  Google Scholar 

  32. E.V. Nesterova, B. Bacroix, and C. Teodosiu: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2527–38.

    Article  Google Scholar 

  33. I.L. Dillamore and H. Katoh: Met. Sci., 1974, vol. 8, pp. 21–27.

    Article  CAS  Google Scholar 

  34. J.Y. Kang, B. Bacroix, H. Réglé, K.H. Oh, and H.C. Lee: Acta Mater., 2007, vol. 55, pp. 4935–46.

    Article  CAS  Google Scholar 

  35. C. Haase, O. Kremer, W. Hu, T. Ingendahl, R. Lapovok, and D.A. Molodov: Acta Mater., 2016, vol. 107, pp. 239–53.

    Article  CAS  Google Scholar 

  36. S.J. Miadad, T. Venugopalan, N. Halder, and B.R. Kumar: J. Mater. Eng. Perform., 2020, vol. 29, pp. 7598–7606.

    Article  CAS  Google Scholar 

  37. B.H. Vadavadagi, H.V. Bhujle, R.K. Khatirkar, and S.K. Shekhawat: Mater. Charact., 2021, vol. 178, p. 111267.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Industry-University-Institute Joint R&D Project in conjunction with SeA Mechanics Co., Ltd. funded by the Korea Industrial Complex Corporation and supported by Industrial Innovation Talent Growth Project of the Korean Ministry of Trade, Industry and Energy funded by Korea Institute for Advancement of Technology (#P0023676, Expert Program for Sustainable Metals Industry).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

IPW: Methodology, software, validation, formal analysis, investigation, data curation, writing-original draft preparation. WB: Validation, investigation. KH: Methodology, formal analysis, investigation, data curation, writing-review and editing, visualization, supervision. YGK: Conceptualization, methodology, resources, writing-review and editing, visualization, supervision, project admin, funding.

Corresponding authors

Correspondence to K. Hamad or Y. G. Ko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Widiantara, I.P., Bahanan, W., Hamad, K. et al. Texture Transformation Induced Grain Fragmentation. Metall Mater Trans A 54, 4579–4585 (2023). https://doi.org/10.1007/s11661-023-07200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07200-y

Navigation