Skip to main content
Log in

Three Composite Coatings Al + Al2O3, Fe–Al and Fe–Al + Al2O3 as a Barrier Against LBE Alloys on F/M Steel by Multi-arc Ion Plating

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The compatibility of cladding material with lead-bismuth eutectic (LBE) above 600 °C poses a critical challenge in the implementation of lead-bismuth fast-cooled stacks. Consequently, we fabricated three coatings of Al + Al2O3, FeAl, and FeAl + Al2O3 using ferritic/martensitic steel as the substrate through multi-arc ion plating. We evaluated the microstructure and hardness of the substrate and coatings, in addition to exploring the samples' corrosion resistance through static LBE corrosion at 600 °C for 1000 hours. Our findings indicate that all three coatings exhibited exceptional corrosion resistance under high-temperature lead-bismuth, and the thickness of the oxide layer formed by corrosion was reduced by 60 pct in comparison to that of the uncoated sample. The oxide layer was composed of Fe3O4, Al2O3, and FeCr2O4. During the corrosion process, lead-bismuth infiltrated the oxide layer through the pores, leading to oxidation of the inner fresh coating, while the outer oxide layer underwent crack expansion with pores at the core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. Chu and A. Majumdar: Nature, 2012, vol. 488, pp. 294–303.

    Article  CAS  Google Scholar 

  2. M.D. Jensen, N.D. Azzolina, S.M. Schlasner, J.A. Hamling, S.C. Ayash, and C.D. Gorecki: Int. J. Greenh. Gas Control, 2018, vol. 78, pp. 236–43.

    Article  CAS  Google Scholar 

  3. H. Narumanchi, D. Goyal, N. Emmadi, P. Gauravaram: in 2018 IEEE International Conference on Smart Cloud.

  4. K.L. Murty and I. Charit: J. Nucl. Mater., 2008, vol. 383, pp. 189–95.

    Article  CAS  Google Scholar 

  5. E.P. Loewen and A.T. Tokuhiro: J. Nucl. Sci. Technol., 2003, vol. 40, pp. 614–27.

    Article  CAS  Google Scholar 

  6. S. Haribabu, C. Sudha, S. Raju, R.N. Hajra, R. Mythili, J. Jayaraj, S. Murugesan, and S. Saroja: Metall. and Mater. Trans. A, 2019, vol. 50A, pp. 1421–36.

    Article  Google Scholar 

  7. J. Zhang: Corros. Sci., 2009, vol. 51, pp. 1207–27.

    Article  CAS  Google Scholar 

  8. J. Zhang and N. Li: J. Nucl. Mater., 2008, vol. 373, pp. 351–77.

    Article  CAS  Google Scholar 

  9. M.P. Popovic, A.M. Bolind, Y. Aussat, A.J. Gubser, and P. Hosemann: J. Nucl. Mater., 2019, vol. 523, pp. 172–81.

    Article  CAS  Google Scholar 

  10. L. Martinelli, C. Jean-Louis, and B.-C. Fanny: Nucl. Eng. Des., 2011, vol. 241, pp. 1288–94.

    Article  CAS  Google Scholar 

  11. X. Gong, M.P. Short, T. Auger, E. Charalampopoulou, and K. Lambrinou: Prog. Mater. Sci., 2022, vol. 126, p. 10920.

    Article  Google Scholar 

  12. G. Chen, Y. Lei, Q. Zhu, Ju. Na, T. Li, and D. Wang: J. Nucl. Mater., 2019, vol. 515, pp. 187–98.

    Article  CAS  Google Scholar 

  13. G. Benamati, C. Fazio, H. Piankova, and A. Rusanov: J. Nucl. Mater., 2002, vol. 301, pp. 23–27.

    Article  CAS  Google Scholar 

  14. K. Lambrinou, E. Charalampopoulou, T. Van der Donck, R. Delville, and D. Schryvers: J. Nucl. Mater., 2017, vol. 490, p. 927.

    Google Scholar 

  15. Lu. Bian, S. Xia, Q. Bai, H. Li, and B. Zhou: J. Nucl. Mater., 2018, vol. 509, pp. 591–99.

    Article  CAS  Google Scholar 

  16. G. Chen, Ju. Na, Y. Lei, D. Wang, Q. Zhu, and T. Li: Prog. Nucl. Energy, 2020, vol. 118, 103074.

    Article  CAS  Google Scholar 

  17. J.-B. Vogt and I.P. Serre: Coatings, 2021, vol. 11, p. 53.

    Article  CAS  Google Scholar 

  18. P. Hosemann, D. Frazer, E. Stergar, and K. Lambrinou: Scripta Mater., 2016, vol. 118, pp. 37–40.

    Article  CAS  Google Scholar 

  19. F. García Ferré, A. Mairov, D. Iadicicco, M. Vanazzi, S. Bassini, M. Utili, M. Tarantino, M. Bragaglia, F.R. Lamastra, F. Nanni, L. Ceseracciu, Y. Serruys, P. Trocellier, L. Beck, K. Sridharan, M.G. Beghi, and F. Di Fonzo: Corros. Sci., 2017, vol. 124, pp. 80–92.

    Article  Google Scholar 

  20. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299–303.

    Article  CAS  Google Scholar 

  21. O.N. Senkov, S.V. Senkova, and C. Woodward: Acta Mater., 2014, vol. 68, pp. 214–28.

    Article  CAS  Google Scholar 

  22. Y.-J. Hsu, W.-C. Chiang, and Wu. Jiann-Kuo: Mater. Chem. Phys., 2005, vol. 92, pp. 112–17.

    Article  CAS  Google Scholar 

  23. A.K. Rivai and M. Takahashi: J. Nucl. Mater., 2010, vol. 398, pp. 146–52.

    Article  CAS  Google Scholar 

  24. S. Das, T.K. Bandyopadhyay, S. Ghosh, A.B. Chattopadhyay, and P.P. Bandyopadhyay: Metall. Mater. Trans. A., 2003, vol. 34A, pp. 1909–918.

    Article  CAS  Google Scholar 

  25. E. Yamaki and M. Takahashi: J. Nucl. Sci. Technol., 2011, vol. 48, pp. 797–804.

    Article  CAS  Google Scholar 

  26. Q.Y. Zhang, Y. Zhou, J.Q. Liu, K.M. Chen, J.G. Mo, X.H. Cui, and S.Q. Wang: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2232–42.

    Article  Google Scholar 

  27. I. Proriol Serre, I. Diop, N. David, M. Vilasi, and J.B. Vogt: Surf. Coat. Technol., 2011, vol. 205, pp. 4521–27.

    Article  CAS  Google Scholar 

  28. T. Huang and Y. Shen: Metall. Mater. Trans. A., 2023, vol. 54A, pp. 952–61.

    Article  Google Scholar 

  29. E. Miorin, F. Montagner, V. Zin, D. Giuranno, E. Ricci, M. Pedroni, V. Spampinato, E. Vassallo, and S.M. Deambrosis: Surf. Coat. Technol., 2019, vol. 377, p. 124890.

    Article  CAS  Google Scholar 

  30. Z.Y. Wu, X. Zhao, Y. Liu, Y. Cai, J.Y. Li, H. Chen, Q. Wan, D. Yang, J. Tan, H.D. Liu, Y.M. Chen, J.L. Guo, J. Zhang, G.D. Zhang, Z.G. Li, and B. Yang: J. Nucl. Mater., 2020, vol. 539, 152280.

    Article  CAS  Google Scholar 

  31. H. Glasbrenner and F. Gröschel: J. Nucl. Mater., 2006, vol. 356, pp. 213–21.

    Article  CAS  Google Scholar 

  32. J. Yang, K. Shi, W. Zhang, Q. Chen, Z. Ning, C. Zhu, J. Liao, Y. Yang, N. Liu, W. Zhang, and J. Yang: Corros. Sci., 2021, vol. 187, p. 109485.

    Article  Google Scholar 

  33. G. Chen, J. Wang, H. Zhang, L. Li, and H. Fan: Scripta Mater., 2021, vol. 202, p. 114014.

    Article  CAS  Google Scholar 

  34. G. Chen, Ju. Na, Y. Lei, D. Wang, Q. Zhu, and T. Li: J. Nucl. Mater., 2019, vol. 522, pp. 168–83.

    Article  CAS  Google Scholar 

  35. V. Tsisar, C. Schroer, O. Wedemeyer, A. Skrypnik, and J. Konys: J. Nucl. Mater., 2017, vol. 494, pp. 422–38.

    Article  CAS  Google Scholar 

  36. Z. Shao, H. Yang, S. Zhang, W. Liu, Z. Xiao, and M. Zheng: Surf. Coat. Technol., 2022, vol. 440, 128491.

    Article  CAS  Google Scholar 

  37. H. Suzuki: Mater. Sci. Eng., 1985, vol. 71, pp. 211–26.

    Article  CAS  Google Scholar 

  38. M. Zamanzade, A. Barnoush, and C. Motz: Crystals, 2016, https://doi.org/10.3390/cryst6010010.

    Article  Google Scholar 

  39. E. Airiskallio, E. Nurmi, M.H. Heinonen, I.J. Väyrynen, K. Kokko, M. Ropo, M.P.J. Punkkinen, H. Pitkänen, M. Alatalo, J. Kollár, B. Johansson, and L. Vitos: Corros. Sci., 2010, vol. 52, pp. 3394–404.

    Article  CAS  Google Scholar 

  40. M. Salamon and H. Mehrer: Z. Metall., 2005, vol. 96, pp. 4–16.

    Article  CAS  Google Scholar 

  41. H. Springer, D. Raabe, and G. Eggeler: 2011.

  42. L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Delpech, G. Santarini, J. Favergeon, G. Moulin, M. Tabarant, and G. Picard: Corros. Sci., 2008, vol. 50, pp. 2523–36.

    Article  CAS  Google Scholar 

  43. L. Martinelli, F. Balbaud-Célérier, G. Picard, and G. Santarini: Corros. Sci., 2008, vol. 50, pp. 2549–59.

    Article  CAS  Google Scholar 

  44. L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Bosonnet, G. Picard, and G. Santarini: Corros. Sci., 2008, vol. 50, pp. 2537–48.

    Article  CAS  Google Scholar 

  45. Y. Kurata, H. Sato, H. Yokota, and T. Suzuki: Mater. Trans., 2011, vol. 52, pp. 1033–40.

    Article  CAS  Google Scholar 

  46. J.A. James and J. Trotman: J. Iron Steel Inst., 1960, vol. 194, p. 319.

    CAS  Google Scholar 

  47. E. Yamaki-Irisawa, S. Numata, and M. Takahashi: Prog. Nucl. Energy, 2011, vol. 53, pp. 1066–72.

    Article  CAS  Google Scholar 

  48. M. Oku and K. Hirokawa: J. Electron Spectrosc. Relat. Phenom., 1976, vol. 8, pp. 475–81.

    Article  CAS  Google Scholar 

  49. Y. Sun, D. Peng, Y. Li, H. Guo, N. Zhang, H. Wang, P. Mei, A. Ishag, H. Alsulami, and M.S. Alhodaly: Environ. Res., 2020, vol. 185, p. 109467.

    Article  CAS  Google Scholar 

  50. N.M. Figueiredo, N.J.M. Carvalho, and A. Cavaleiro: Appl. Surf. Sci., 2011, vol. 257, pp. 5793–98.

    Article  CAS  Google Scholar 

  51. G. Mattogno, G. Righini, G. Montesperelli, and E. Traversa: Appl. Surf. Sci., 1993, vol. 70–71, pp. 363–66.

    Article  Google Scholar 

  52. G.C. Allen, M.T. Curtis, A.J. Hooper, and P.M. Tucker: J. Chem. Soc. Dalton Trans. 1973, 14, pp. 1675–83.

  53. G. Sheng, A. Alsaedi, W. Shammakh, S. Monaquel, J. Sheng, X. Wang, H. Li, and Y. Huang: Carbon, 2016, vol. 99, pp. 123–30.

    Article  CAS  Google Scholar 

  54. Abu Khalid Rivai and Minoru Takahashi: J. Nucl. Mater., 2010, vol. 398, pp. 139–45.

    Article  Google Scholar 

  55. M. Takahashi, H. Sekimoto, K. Ishikawa, N. Sawada, T. Suzuki, S. Yoshida, T. Yano, M. Imai, K. Hata, and S.Z. Qiu, J. Am. Soc. Mech. Eng., 2002. https://doi.org/10.1115/ICONE10-22226

    Article  Google Scholar 

  56. J. Chen, Q.-L. Pan, Yu. Xue-hong, M.-J. Li, H. Zou, H. Xiang, Z. Huang, and H. Quan: J. Cent. South Univ., 2018, vol. 25, pp. 961–75.

    Article  CAS  Google Scholar 

  57. M. Nakamichi, T. Takabatake, and H. Kawamura: Fusion Eng. Des., 1998, vol. 41, pp. 143–47.

  58. Y. Kurata, M. Futakawa, and S. Saito: J. Nucl. Mater., 2004, vol. 335, pp. 501–07.

    Article  CAS  Google Scholar 

  59. O. Ikeda, I. Ohnuma, R. Kainuma, and K. Ishida: Intermetallics, 2001, vol. 9, pp. 755–61.

    Article  CAS  Google Scholar 

  60. Y.B. Pithawalla, M.S. El-Shall, S.C. Deevi, V. Strom, and K.V. Rao: J. Phys. Chem. B, 2001, vol. 105, pp. 2085–90.

    Article  CAS  Google Scholar 

  61. X.L. Li, A. Scherf, M. Heilmaier, and F. Stein: J. Phase Equilib. Diffus., 2016, vol. 37, pp. 162–73.

    Article  CAS  Google Scholar 

  62. J.L. Jordan and S.C. Deevi: Intermetallics, 2003, vol. 11, pp. 507–28.

    Article  CAS  Google Scholar 

  63. S. Dorfman: Comput. Mater. Sci., 2000, vol. 17, pp. 186–90.

    Article  CAS  Google Scholar 

  64. M. Zamanzade, A. Barnoush, and C. Motz: Crystals, 2016, vol. 6, p. 10.

    Article  Google Scholar 

  65. Bo. Sundman, I. Ohnuma, N. Dupin, U.R. Kattner, and S.G. Fries: Acta Mater., 2009, vol. 57, pp. 2896–2908.

    Article  CAS  Google Scholar 

  66. H. Mehrer: Diffusion in Solid, Springer, Berlin, 2007.

    Book  Google Scholar 

  67. P. Heitjans and J. Krger: Diffusion in Condensed Matter, Springer, Berlin, 2012.

    Google Scholar 

  68. H. Skoglund, M. Knutson-Wedel, and B. Karlsson: Acta Mater., 2006, vol. 54, pp. 3853–61.

    Article  CAS  Google Scholar 

  69. J. Zhang and N. Li: Oxid. Met., 2005, vol. 63, pp. 353–81.

    Article  CAS  Google Scholar 

  70. N.S. Stoloff: Mater. Sci. Eng. A, 1998, vol. 258, pp. 1–4.

    Article  Google Scholar 

  71. J.H. DeVan and P.F. Tortorelli: Corros. Sci., 1993, vol. 35, pp. 1065–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the Grants provided by the National Natural Science Foundation of China (Nos. 51471112 and 51611130204), Science and Technology Planning Project of Sichuan (Nos. 2019YFG0261 and 2020YFG0095). In addition, special thanks to NPIC for funding (SCU&DRSI-LHCX-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Zhang, S., Pan, D. et al. Three Composite Coatings Al + Al2O3, Fe–Al and Fe–Al + Al2O3 as a Barrier Against LBE Alloys on F/M Steel by Multi-arc Ion Plating. Metall Mater Trans A 54, 4701–4715 (2023). https://doi.org/10.1007/s11661-023-07192-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07192-9

Navigation