Skip to main content
Log in

The Stress-Controlled Low Cycle Fatigue Properties of HK40 and HP40 Heat-Resistant Fe–Ni Base Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The low cycle fatigue (LCF) properties of centrifugally cast Centralloy ET 45 MICRO (HK40 type) and Centralloy G 4852 MICRO (HP40 type) were quantified using fully reversed, stress-controlled fatigue tests at temperatures between 350 °C and 600 °C. Cast samples for both alloys were artificially aged to simulate the microstructure of alloys observed during service before assessing the LCF properties. Despite having a similar yield strength, the Centralloy ET 45 MICRO alloy was measured to exhibit reduced LCF properties when compared to Centralloy G 4852 MICRO specimen at elevated temperatures. The differences are largely attributed to variations in the size distribution of the primary Cr carbide clusters resulting from the solidification conditions. The ratio of stress amplitude over yield strength shows good agreement with the lifetime at every tested temperature as \(\frac{{\sigma }_{a}}{{\sigma }_{Y}}=A{\left({N}_{f}\right)}^{C}\). At elevated temperatures and high stress amplitudes, plastic deformation and stress relaxation contribute to improving the overall LCF properties of both alloys. However, at smaller stress amplitudes where the test times are prolonged, elevated temperatures are responsible for deteriorating the LCF response of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Material datasheet, Centralloy ET 45 MICRO, efaidnbmnnnibpcajpcglclefindmkaj/https://www.schmidt-clemens.de/fileadmin/scdownloads/werkstoffdatenblaetter/WST_ET_45_micro_161109.pdf

  2. Material datasheet, Centralloy G 4852 MICRO, efaidnbmnnnibpcajpcglclefindmkaj/https://www.schmidt-clemens.com/fileadmin/sc-downloads/werkstoffdatenblaetter/WST_4852_Micro_161109.pdf

  3. W.Z. Wang, F.Z. Xuan, Z.D. Wang, B. Wang, and C.J. Liu: Mater. Des., 2011, vol. 32, pp. 4010–16.

    Article  CAS  Google Scholar 

  4. B. Piekarski: Mater. Charact., 2001, vol. 47, pp. 181–86.

    Article  CAS  Google Scholar 

  5. C.-M. Fuyang, J.-Y. Chen, B. Shao, Y. Zhou, J.-M. Gong, X.-F. Guo, and Y. Jiang: Int. J. Press. Vessels Pip., 2021, vol. 192, p. 104391.

    Article  CAS  Google Scholar 

  6. R.C. Ecob, R.C. Lobb, and V.L. Kohler: J. Mater. Sci., 1987, vol. 22, pp. 2867–80.

    Article  CAS  Google Scholar 

  7. M. Abbasi, I. Park, Y. Ro, Y. Ji, R. Ayer, and J.-H. Shim: Mater. Charact., 2019, vol. 148, pp. 297–306.

    Article  CAS  Google Scholar 

  8. N. Vaché, P. Steyer, C. Duret-Thual, M. Perez, T. Douillard, E. Rauch, and M. Véron: Materialia, 2020, vol. 9, p. 100593.

    Article  Google Scholar 

  9. A.A. Kaya, P. Krauklis, and D.J. Young: Mater. Charact., 2002, vol. 49, pp. 11–21.

    Article  CAS  Google Scholar 

  10. Y.-J. Kim, D.-G. Lee, H.K. Jeong, Y.-T. Lee, and H. Jang: Mater. Eng. Perform., 2010, vol. 19, pp. 700–04.

    Article  CAS  Google Scholar 

  11. M. Ekström and S. Jonsson: Mater. Sci. Eng. A, 2014, vol. 616, pp. 78–87.

    Article  Google Scholar 

  12. N.E. Frost, K.J. Marsh, and L.P. Pook: Metal Fatigue, Courier Corporation, North Chelmsford, 1999.

    Google Scholar 

  13. M.D. Sangid: Int. J. Fatigue, 2013, vol. 57, pp. 58–72.

    Article  CAS  Google Scholar 

  14. K.S. Chan: Int. J. Fatigue, 2010, vol. 32, pp. 1428–47.

    Article  CAS  Google Scholar 

  15. K. Kobayashi, K. Yamaguchi, M. Hayakawa, and M. Kimura: Mater. Lett., 2015, vol. 59, pp. 383–86.

    Article  Google Scholar 

  16. D. Gopikrishna, S.N. Jha, and L.N. Dash: Superalloys, 1997, vol. 718, pp. 625–706.

    Google Scholar 

  17. A.R. Balachandramurthi, J. Moverare, N. Dixit, and R. Pederson: Mater. Sci. Eng. A, 2018, vol. 735, pp. 463–74.

    Article  CAS  Google Scholar 

  18. Y. Nadot, J. Mendez, and N. Ranganathan: Int. J. Fatigue, 2004, vol. 26, pp. 311–19.

    Article  CAS  Google Scholar 

  19. S. Vantadori, C. Ronchei, D. Scorza, A. Zanichelli, and R. Luciano: Fatigue Fract. Eng. Mater. Struct., 2022, vol. 45, pp. 2734–47.

    Article  Google Scholar 

  20. K.S. Chan: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 1148–162.

    Article  Google Scholar 

  21. M. Kamaya: Int. J. Fatigue, 2013, vol. 55, pp. 102–11.

    Article  CAS  Google Scholar 

  22. K. Kobayashi, K. Yamaguchi, M. Hayakawa, and M. Kimura: Int. J. Fatigue, 2008, vol. 30, pp. 1978–84.

    Article  CAS  Google Scholar 

  23. R.P. Skelton, ed.: High Temperature Fatigue: Properties and Prediction, Springer Science & Business Media, Berlin, 2012.

    Google Scholar 

  24. M.S.J. Hashmi: Comprehensive Materials Processing, Newnes, Oxford, 2014.

    Google Scholar 

  25. C. Cabet, L. Carroll, and R. Wright: J. Press. Vessel Technol., 2013. https://doi.org/10.1115/1.4025080.

    Article  Google Scholar 

  26. S. Konosu: Fatigue Fract. Eng. Mater. Struct., 1994, vol. 17, pp. 683–93.

    Article  Google Scholar 

  27. L. Sun, X.-G. Bao, S.-J. Guo, R.-Z. Wang, X.-C. Zhang, and S.-T. Tu: Int. J. Fatigue, 2021, vol. 147, p. 106187.

    Article  CAS  Google Scholar 

  28. M. Sauzay, M. Mottot, L. Allais, M. Noblecourt, I. Monnet, and J. Périnet: Nucl. Eng. Des., 2004, vol. 232, pp. 219–36.

    Article  CAS  Google Scholar 

  29. A. Saxena and S.J. Hudak: Fract. Mech. ASTM STP, 1979, vol. 677, pp. 215–32.

    Google Scholar 

  30. Y.J. Oh, J.H. Hong, and S.W. Nam: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1761–75.

    Article  CAS  Google Scholar 

  31. J.L. Bassani and F.A. McClintock: Int. J. Solids Struct., 1981, vol. 17, pp. 479–92.

    Article  Google Scholar 

  32. P.P. Gillis: Acta Metall., 1966, vol. 14, pp. 1673–76.

    Article  CAS  Google Scholar 

  33. G.V. Prasad Reddy, P.M. Dinesh, R. Sandhya, K. Laha, and T. Jayakumar: Int. J. Fatigue, 2016, vol. 92, pp. 272–80.

    Article  CAS  Google Scholar 

  34. B. Zhang, R. Wang, D. Hu, K. Jiang, J. Mao, F. Jing, and X. Hao: Chin. J. Aeronaut., 2021, vol. 34, pp. 112–21.

    Article  CAS  Google Scholar 

  35. M.L. Saucedo-Muñoz, A. Ortiz-Mariscal, V.M. Lopez-Hirata, J.D. Villegas-Cardenas, O. Soriano-Vargas, and E.O. Avila-Davila: Int. J. Miner. Metall. Mater., 2017, vol. 24, pp. 1125–33.

    Article  Google Scholar 

  36. M. Roussel, X. Sauvage, M. Perez, D. Magné, A. Hauet, A. Steckmeyer, M. Vermont, T. Chaise, and M. Couvrat: Materialia, 2018, vol. 4, pp. 331–39.

    Article  CAS  Google Scholar 

  37. P.G. Caceres-Valencia and I.J. Baiges: J. Fail. Anal. Prev., 2006, vol. 6, pp. 67–72.

    Article  Google Scholar 

  38. S. Mohapatra, H. Sarangi, and U.K. Mohanty: Manuf. Rev., 2020, vol. 7, p. 26.

    CAS  Google Scholar 

  39. N.S. Madhusudhan and G.C. Mohan Kumar: Int. J. Sci. Eng. Res., 2012, vol. 3, pp. 1–3.

    Google Scholar 

  40. G. Monnet: Philos. Mag., 2006, vol. 86, pp. 5927–41.

    Article  CAS  Google Scholar 

  41. W. Hwang and K.S. Han: J. Compos. Mater., 1986, vol. 20, pp. 154–65.

    Article  CAS  Google Scholar 

  42. C.-K. Lin, P.-K. Lai, and T.-S. Shih: Int. J. Fatigue, 1996, vol. 18, pp. 297–307.

    Article  CAS  Google Scholar 

  43. S. Leuders, T. Lieneke, S. Lammers, T. Tröster, and T. Niendorf: J. Mater. Res., 2014, vol. 29, pp. 1911–19.

    Article  CAS  Google Scholar 

  44. S. Konosu, T. Koshimizu, T. Iijima, and K. Maeda: J. Mech. Des., 1993, vol. 115, no. 1, pp. 41–6. https://doi.org/10.1115/1.2919322.

    Article  Google Scholar 

  45. S.S. Manson: Int. Symp. Fatigue Elev. Temp., No. NASA-TM-X-68171, 1972.

Download references

Acknowledgments

The authors gratefully acknowledge I-Ting, Ho from University of Arizona for his excellent contribution in EBSD operation.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Tin, S. The Stress-Controlled Low Cycle Fatigue Properties of HK40 and HP40 Heat-Resistant Fe–Ni Base Alloys. Metall Mater Trans A 54, 4545–4557 (2023). https://doi.org/10.1007/s11661-023-07188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07188-5

Navigation