Skip to main content
Log in

Temperature-Dependent Easy Slip System Transformation in WC and TiC

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Owing to the distinguished mechanical properties, WC and TiC are important engineering materials used in machining and drilling. However, the hardness of WC and TiC is reduced dramatically under elevated temperatures, which therefore limits their application in high-temperature conditions. To reveal the reason for the decrease in hardness of WC and TiC, with the ultimate goal of designing potential hard materials, the temperature-dependent hardness of WC and TiC is investigated by a dislocation-based model. First, the possible dislocations were determined by generalized stacking fault energy distribution. Second, their temperature-dependent elastic constants were calculated, from which the stability and anisotropy were analyzed. WC and TiC are both stable up to 1500 K. The anisotropy of WC is increased with increasing temperature, while that of TiC is decreased. The anisotropy on different planes was also analyzed. Third, the slip system transformations were analyzed. The stress-dependent activation energy and temperature-dependent critical resolved shear stress of all dislocations decrease with increasing stress or temperature. The slip systems of single crystals and polycrystals are both changed with increasing temperature. The temperature-softening rate and yield strength of polycrystals are both between the minimum and maximum values of individual loading directions. Finally, the hardness of WC and TiC was calculated. They both decrease with increasing temperature. In addition, the influences of dislocation density and strain rate were also analyzed. The hardnesses of WC and TiC polycrystals are both decreased with increasing dislocation density. Up to 300 K, the hardness of WC is almost unchanged with increasing strain rate, while at higher temperature, it is increased with increasing strain rate. The hardness of TiC is increased with increasing strain rate. Our findings provide a vital reference for further research in the high-temperature hardness of transition metal carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.I. Cha and S.H. Hong: Mater. Sci. Eng. A, 2003, vol. 356, pp. 381–89.

    Article  Google Scholar 

  2. A.M. Augustine and P. Ravindran: J. Phys., 2020, vol. 32, 145701.

    CAS  Google Scholar 

  3. S.-H. Chang and P.-Y. Chang: Mater. Sci. Eng. A, 2014, vol. 606, pp. 150–56.

    Article  CAS  Google Scholar 

  4. V. Bonache, M.D. Salvador, D. Busquets, P. Burguete, E. Martínez, F. Sapiña, and E. Sánchez: Int. J. Refract. Metal Hard Mater., 2011, vol. 29, pp. 78–84.

    Article  CAS  Google Scholar 

  5. M. Chen, X. Xiao, X. Zhang, and C. Zhao: Jom, 2019, vol. 72, pp. 385–92.

    Article  Google Scholar 

  6. X.Y. Cheng, J.H. Zhou, X. Xiong, Y. Du, and C. Jiang: Comput. Mater. Sci., 2012, vol. 59, pp. 41–47.

    Article  CAS  Google Scholar 

  7. D.E. Grove, U. Gupta, and A.W. Castleman Jr: ACS Nano, 2010, vol. 4, pp. 49–54.

    Article  CAS  Google Scholar 

  8. Y. Dong, L. Zhang, C. Wang, and Q. Shen: Adv. Appl. Ceram., 2017, vol. 116, pp. 267–71.

    Article  CAS  Google Scholar 

  9. S. Dyjak, M. Norek, M. Polański, S. Cudziło, and J. Bystrzycki: Int. J. Refract Metal Hard Mater., 2013, vol. 38, pp. 87–91.

    Article  CAS  Google Scholar 

  10. K. Bobzin: CIRP J. Manuf. Sci. Technol., 2017, vol. 18, pp. 1–9.

    Article  Google Scholar 

  11. M. Lee: Metall. Trans. A, 1983, vol. 14A, pp. 1625–29.

    Article  CAS  Google Scholar 

  12. J. Wheeler and J. Michler: Rev. Sci. Instrum., 2013, vol. 84, 101301.

    Article  CAS  Google Scholar 

  13. Y.V. Milman, S. Chugunova, and V. Goncharuck: Int. J. Refract. Metals Hard Mater., 1997, vol. 15, pp. 97–101.

    Article  CAS  Google Scholar 

  14. Y.V. Milman, S. Luyckx, and I. Northrop: Int. J. Refract. Metal Hard Mater., 1999, vol. 17, pp. 39–44.

    Article  CAS  Google Scholar 

  15. H. Mao, F. Shen, Y. Zhang, J. Wang, K. Cui, H. Wang, T. Lv, T. Fu, and T. Tan: Coatings, 2021, vol. 11, p. 1444.

    Article  CAS  Google Scholar 

  16. A.V. Shatov, S.S. Ponomarev, and S.A. Firstov: Int. J. Refract. Metal Hard Mater., 2009, vol. 27, pp. 198–212.

    Article  CAS  Google Scholar 

  17. F. De Luca, H. Zhang, K. Mingard, M. Stewart, B.M. Jablon, C. Trager-Cowan, and M.G. Gee: Materialia, 2020, vol. 12, 100713.

    Article  Google Scholar 

  18. H. Dong, B. Li, B. Liu, Y. Zhang, L. Sun, K. Luo, Y. Wu, M. Ma, B. Liu, W. Hu, J. He, D. Yu, B. Xu, Z. Zhao, and Y. Tian: J. Mater. Sci. Technol., 2022, vol. 97, pp. 169–75.

    Article  CAS  Google Scholar 

  19. X. Feng, J. Xiao, B. Wen, J. Zhao, B. Xu, Y. Wang, and Y. Tian: Sci. China Mater., 2021, vol. 64, pp. 2280–88.

    Article  CAS  Google Scholar 

  20. J. Hafner: J. Comput. Chem., 2008, vol. 29, pp. 2044–78.

    Article  CAS  Google Scholar 

  21. G. Kresse and J. Furthmüller: Phys. Rev. B, 1996, vol. 54, p. 11169.

    Article  CAS  Google Scholar 

  22. Perdew, J. P., Burke, K., Ernzerhof, M. and Erratum: Phys. Rev. Lett. 1996, vol. 77, pp. 3865-68.

  23. P.E. Blöchl: Phys. Rev. B, 1994, vol. 50, p. 17953.

    Article  Google Scholar 

  24. S. Mann, P. Rani, R. Kumar, and V.K. Jindal: AIP Conference Proceedings, AIP Publishing, Melville, 2015.

    Google Scholar 

  25. B. Wen, T. Shao, R. Melnik, Y. Kawazoe, and Y. Tian: J. Appl. Phys., 2013, vol. 113, 103501.

    Article  Google Scholar 

  26. T. Shao, B. Wen, R. Melnik, Y. Shan, Y. Kawazoe, and Y. Tian: J. Appl. Phys., 2012, vol. 137, 194901.

    Google Scholar 

  27. X. Li, X. Zhang, J. Qin, S. Zhang, J. Ning, R. Jing, M. Ma, and R. Liu: J. Phys. Chem. Solids, 2014, vol. 75, pp. 1234–39.

    Article  CAS  Google Scholar 

  28. Y. Dou and J. Zhang: Comput. Mater. Sci., 2015, vol. 98, pp. 405–09.

    Article  CAS  Google Scholar 

  29. F. Guiu: Phys. Status Solidi (b), 1969, vol. 33, pp. 785–95.

    Article  Google Scholar 

  30. M.R. Barnett, Z. Keshavarz, and X. Ma: Metall. Mater. Trans., 2006, vol. 37, pp. 2283–293.

    Article  Google Scholar 

  31. A.P. Sekhar, S. Nandy, K.K. Ray, and D. Das: IOP Conference Series: Materials Science and Engineering, IOP Publishing, Bristol, 2018, p. 012011.

    Google Scholar 

  32. M. Born and K. Huang: Dynamical Theory of Crystal Lattices, Oxford University Press, Oxford, 1954.

    Google Scholar 

  33. V. Mishra and S. Chaturvedi: J. Phys. Chem. Solids, 2013, vol. 74, pp. 509–17.

    Article  CAS  Google Scholar 

  34. Y. Li, Y. Gao, B. Xiao, T. Min, Z. Fan, S. Ma, and L. Xu: J. Alloys Compd., 2010, vol. 502, pp. 28–37.

    Article  CAS  Google Scholar 

  35. M. Kavitha, G.S. Priyanga, R. Rajeswarapalanichamy, and K. Iyakutti: J. Phys. Chem. Solids, 2015, vol. 77, pp. 38–49.

    Article  CAS  Google Scholar 

  36. J.J. Gilman and B.W. Roberts: J. Appl. Phys., 1961, vol. 32, pp. 1405–405.

    Article  CAS  Google Scholar 

  37. W. Weber: Phys. Rev. B, 1973, vol. 8, pp. 5082–092.

    Article  CAS  Google Scholar 

  38. Y.M. Kim and B.J. Lee: Acta Mater., 2008, vol. 56, pp. 3481–489.

    Article  CAS  Google Scholar 

  39. W. Wolf, R. Podloucky, T. Antretter, and F.D. Fischer: Philos. Mag. B, 1999, vol. 79, pp. 839–58.

    Article  CAS  Google Scholar 

  40. A. Zaoui, B. Bouhafs, and P. Ruterana: Mater. Chem. Phys., 2005, vol. 91, pp. 108–15.

    Article  CAS  Google Scholar 

  41. A.Y. Liu, R.M. Wentzcovitch, and M.L. Cohen: Phys Rev B, 1988, vol. 38, pp. 9483–489.

    Article  CAS  Google Scholar 

  42. D.L. Price and B.R. Cooper: Phys. Rev. B, 1989, vol. 39, p. 4945.

    Article  CAS  Google Scholar 

  43. Y. Liu, Y. Jiang, R. Zhou, and J. Feng: Ceram. Int., 2014, vol. 40, pp. 2891–899.

    Article  CAS  Google Scholar 

  44. S. Dodd, M. Cankurtaran, and B. James: J. Mater. Sci., 2003, vol. 38, pp. 1107–115.

    Article  CAS  Google Scholar 

  45. Y. Yang, H. Lu, C. Yu, and J.M. Chen: J. Alloys Compd., 2009, vol. 485, pp. 542–47.

    Article  CAS  Google Scholar 

  46. J. Kim and Y.J. Suh: J. Alloys Compd., 2016, vol. 666, pp. 262–69.

    Article  CAS  Google Scholar 

  47. T.C.T. Ting: J. Elast., 2006, vol. 81, pp. 271–92.

    Article  Google Scholar 

  48. K.M. Knowles and P.R. Howie: J. Elast., 2014, vol. 120, pp. 87–108.

    Article  Google Scholar 

  49. M. Liao, Y. Liu, P. Cui, N. Qu, F. Zhou, D. Yang, T. Han, Z. Lai, and J. Zhu: Comput. Mater. Sci., 2020, vol. 172, 109289.

    Article  CAS  Google Scholar 

  50. M. Liao, Y. Liu, L. Min, Z. Lai, T. Han, D. Yang, and J. Zhu: Intermetallics, 2018, vol. 101, pp. 152–64.

    Article  CAS  Google Scholar 

  51. W. Bao, D. Liu, P. Li, and Y. Duan: Ceram. Int., 2019, vol. 45, pp. 1857–67.

    Article  CAS  Google Scholar 

  52. A. Miyoshi and A. Hara: J. Jpn. Soc. Powder Powder Metall., 1965, vol. 12, pp. 78–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51925105, and 51771165), and the National Key R&D Program of China (YS2018YFA070119).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Feng, X., He, M. et al. Temperature-Dependent Easy Slip System Transformation in WC and TiC. Metall Mater Trans A 54, 4529–4544 (2023). https://doi.org/10.1007/s11661-023-07187-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07187-6

Navigation