Skip to main content
Log in

Quantifying the Crack-Tip Residual Stress of Nickel-Based Single-Crystal Alloys at the Micron Scale by Focused Ion Beam and Digital Image Correlation

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

This article has been updated

Abstract

The cracking of nickel-based single-crystal alloys is associated with the residual stress. In this paper, we employed focused ion beam and digital image correlation (FIB-DIC) technology to characterize the crack-tip residual stress at ultrahigh spatial resolution. The repeatability and accuracy of FIB-DIC were validated by experiments and simulations. A direct correlation between residual stress and hardness was established, which provides a new way to prevent cracking through the visualization and control of residual stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 09 September 2023

    The corresponding authors’ contact emails have been added.

References

  1. T.M. Pollock: Nat. Mater., 2016, vol. 15, pp. 809–15.

    Article  CAS  Google Scholar 

  2. X. An, Y. Mu, J. Liang, J. Li, Y. Zhou, and X. Sun: J. Mater. Sci. Technol., 2022, vol. 127, pp. 177–82.

    Article  CAS  Google Scholar 

  3. H. Niu, F. Zheng, H. Wang, C. Liu, R. Li, X. Li, H. Wu, Q. Liu, and G. Fan: Metall. Mater. Trans. A, 2023, vol. 54, pp. 777–82.

    Article  CAS  Google Scholar 

  4. X. Liang, Y.T. Zhao, D. Ma, Z. Jia, and X. Meng: Mater. Manuf. Process., 2017, vol. 32, pp. 1887–92.

    Article  CAS  Google Scholar 

  5. J. Li, X. An, J. Liang, Y. Zhou, and X. Sun: J. Mater. Sci. Technol., 2022, vol. 117, pp. 79–98.

    Article  CAS  Google Scholar 

  6. J.C. Han and H.C. Chen: J. Propul. Power, 2006, vol. 22, pp. 226–48.

    Article  Google Scholar 

  7. L.M. Wright, J.C. Han, and J. Enhanc: Heat Transf., 2014, vol. 21, pp. 111–40.

    Google Scholar 

  8. W. Tang, T. Zhao, R. Dou, and L. Wang: Ceram. Int., 2022, vol. 48, pp. 15218–26.

    Article  CAS  Google Scholar 

  9. J. Fan, X. Xu, S. Niu, Y. Zhou, X. Li, Y. Guo, and Y. Luo: J. Eur. Ceram. Soc., 2022, vol. 42, pp. 4388–95.

    Article  CAS  Google Scholar 

  10. J.E. Kanyo, S. Schafföner, R.S. Uwanyuze, and K.S. Leary: J. Eur. Ceram. Soc., 2020, vol. 40, pp. 4955–73.

    Article  CAS  Google Scholar 

  11. R. Yi, C. Chen, C. Shi, Y. Li, H. Li, and Y. Ma: Ceram. Int., 2021, vol. 47, pp. 20807–20.

    Article  CAS  Google Scholar 

  12. X.Y. Tian, J.C. Feng, J.M. Shi, H.W. Li, and L.X. Zhang: Ceram. Int., 2015, vol. 41, pp. 145–53.

    Article  CAS  Google Scholar 

  13. J.W. Park, P.F. Mendez, and T.W. Eagar: Acta Mater., 2002, vol. 50, pp. 883–99.

    Article  CAS  Google Scholar 

  14. A. Morançais, M. Fèvre, M. François, N. Guel, S. Kruch, P. Kanouté, and A. Longuet: J. Appl. Crystallogr., 2015, vol. 48, pp. 1761–76.

    Article  Google Scholar 

  15. Y. Geng, X. Dong, K. Wang, X. Mei, Z. Tang, and W. Duan: Opt. Laser Technol., 2020, vol. 123, p. 105917.

    Article  CAS  Google Scholar 

  16. M. Liu, Q. Zheng, X. Wang, and C. Xu: Mech. Mater., 2022, vol. 164, p. 104143.

    Article  Google Scholar 

  17. R.M.N. Fleury, E. Salvati, D. Nowell, A.M. Korsunsky, F. Silva, and Y.H. Tai: Int. J Fatigue, 2019, vol. 119, pp. 34–42.

    Article  CAS  Google Scholar 

  18. E. Salvati, A.J.G. Lunt, C.P. Heason, G.J. Baxter, and A.M. Korsunsky: Mater. Des., 2020, vol. 191, p. 108605.

    Article  CAS  Google Scholar 

  19. J. Chen, E. Salvati, F. Uzun, C. Papadaki, Z. Wang, J. Everaerts, A.M. Korsunsky, and J. Manuf: Process., 2020, vol. 53, pp. 190–200.

    CAS  Google Scholar 

  20. E. Salvati, A.J.G. Lunt, S. Ying, T. Sui, H.J. Zhang, C. Heason, G. Baxter, and A.M. Korsunsky: Comput. Methods Appl. Mech. Engrg., 2017, vol. 320, pp. 335–51.

    Article  Google Scholar 

  21. J. Everaerts, E. Salvati, F. Uzun, L. Romano Brandt, H. Zhang, and A.M. Korsunsky: Acta Mater., 2018, vol. 156, pp. 43–51.

    Article  CAS  Google Scholar 

  22. J. Everaerts, H. Li, W. Li, and A.M. Korsunsky: Scr. Mater., 2023, vol. 235, p. 115634.

    Article  CAS  Google Scholar 

  23. D. Fukui, N. Nakada, and S. Onaka: Acta Mater., 2020, vol. 196, pp. 660–68.

    Article  CAS  Google Scholar 

  24. A.J.G. Lunt, N. Baimpas, E. Salvati, I.P. Dolbnya, T. Sui, S. Ying, H. Zhang, A.K. Kleppe, J. Dluhoš, and A.M. Korsunsky: J. Strain. Anal. Eng. Des., 2015, vol. 50, pp. 426–44.

    Article  Google Scholar 

  25. A.J.G. Lunt and A.M. Korsunsky: Surf. Coat. Technol., 2015, vol. 283, pp. 373–88.

    Article  CAS  Google Scholar 

  26. E. Salvati, L. Romano-Brandt, M.Z. Mughal, M. Sebastiani, and A.M. Korsunsky: J. Mech. Phys. Solids, 2019, vol. 125, pp. 488–501.

    Article  CAS  Google Scholar 

  27. E. Salvati, T. Sui, and A.M. Korsunsky: Int. J. Solids Struct., 2016, vol. 87, pp. 61–69.

    Article  Google Scholar 

  28. E. Salvati, S. O’Connor, T. Sui, D. Nowell, and A.M. Korsunsky: Eng. Fract. Mech., 2016, vol. 167, pp. 210–23.

    Article  Google Scholar 

  29. E. Salvati, T. Sui, A.J.G. Lunt, and A.M. Korsunsky: Mater. Des., 2016, vol. 92, pp. 649–58.

    Article  CAS  Google Scholar 

  30. A.M. Korsunsky, M. Sebastiani, and E. Bemporad: Surf. Coat. Technol., 2010, vol. 205, pp. 2393–403.

    Article  CAS  Google Scholar 

  31. A.J.G. Lunt, E. Salvati, L. Ma, I.P. Dolbyna, T.K. Neo, and A.M. Korsunsky: J. Mech. Phys. Solids, 2016, vol. 94, pp. 47–67.

    Article  CAS  Google Scholar 

  32. Y. Su and Q. Zhang: Opt. Lasers Eng., 2022, vol. 148, p. 106766.

    Article  Google Scholar 

  33. B. Zhu, Y. Wang, J. Dluhoš, A.J. London, M. Gorley, M.J. Whiting, and T. Sui: Sci. Adv., 2022, vol. 8, p. eabl4592.

    Article  CAS  Google Scholar 

  34. S. Haratian, F. Niessen, F.B. Grumsen, M.J.B. Nancarrow, E.V. Pereloma, M. Villa, T.L. Christiansen, and M.A.J. Somers: Acta Mater., 2020, vol. 200, pp. 674–85.

    Article  CAS  Google Scholar 

  35. A.M. Korsunsky, E. Salvati, A.G.J. Lunt, T. Sui, M.Z. Mughal, R. Daniel, J. Keckes, E. Bemporad, and M. Sebastiani: Mater. Des., 2018, vol. 145, pp. 55–64.

    Article  Google Scholar 

  36. Y.C. Lin and C.Y. Wang: J. Alloys Compd., 2020, vol. 838, p. 155141.

    Article  CAS  Google Scholar 

  37. T.Y. Tsui, W.C. Oliver, and G.M. Pharr: J. Mater. Res., 1996, vol. 11, pp. 752–59.

    Article  CAS  Google Scholar 

  38. S. Suresh and A.E. Giannakopoulos: Acta Mater., 1998, vol. 46, pp. 5755–67.

    Article  CAS  Google Scholar 

  39. S. Gao, S. Geng, P. Jiang, C. Han, and L. Ren: Opt. Laser Technol., 2022, vol. 146, p. 107580.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research & Development Plan (Grant No. 2020YFA0405900), the National Natural Science Foundation of China (Grant Nos. 52171117, 92263201, 51927801), and State Key Lab of Advanced Metals and Materials (Grant No. 2022-Z19).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiping Xia or Hao Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, H., Sun, W., Li, R. et al. Quantifying the Crack-Tip Residual Stress of Nickel-Based Single-Crystal Alloys at the Micron Scale by Focused Ion Beam and Digital Image Correlation. Metall Mater Trans A 54, 4215–4221 (2023). https://doi.org/10.1007/s11661-023-07184-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07184-9

Navigation