Skip to main content
Log in

Influence of Microstructural Homogenization on the Localized Deformation Behavior of Single-Crystal Ni-Based Superalloy, CMSX-4

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

CMSX-4 is a technically important Ni-based superalloy which is used for various niche applications in the aerospace industries, owing to its excellent strength, fatigue, and creep resistances. However, the as-cast single-crystal alloy suffers from elemental segregation and micro-scale inhomogeneities, i.e., dendritic structure along with nano-scale γ/γʹ precipitates. A 16-fold enhancement in the withdrawal rate with respect to the commonly used one shows prominent microstructural refinement. The specialized heat treatment schedule along with higher withdrawal rate leads to the successful removal of micro- and nano-scale non-uniformities and elemental partitioning. Systematic nanoindentation-based investigation indicates higher hardness for faster withdrawal rate. Furthermore, localized nanoindentation reveals distinctly higher hardness for the dendrite as compared to inter-dendritic region in the as-cast condition. Most importantly, uniformity in localized hardness as well as least effect of size dependency is achieved upon optimally heat treating the superalloy. The gradual transition from elastic to plastic deformation behavior is noted for the as-cast alloy. Aged alloys, however, show excellent resistance to plastic deformation. Overall, a detailed insight is developed on the processing-structure-property correlation for CMSX-4 superalloy. Certainly, the newly designed faster withdrawal rate with homogenized microstructure can provide a reliable approach for manufacturing of single-crystal components.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Wang, H. Zhang, C. Liu, X. Gong, Y. Pei, Y. Zou, Y. Liu, and Q. Wang: J. Alloys Compd., 2022, vol. 912, 165175.

    Article  CAS  Google Scholar 

  2. J. Yang, F. Jing, Z. Yang, K. Jiang, D. Hu, and B. Zhang: J. Alloys Compd., 2021, vol. 872, 159578.

    Article  CAS  Google Scholar 

  3. X. Li, Y. Zhang, W. Li, S. Zhou, and P. Wang: Fatigue Fract. Eng. Mater. Struct., 2021, vol. 44, pp. 3431–47.

    Article  CAS  Google Scholar 

  4. C. Zhang, P. Wang, Z. Wen, Z. Xu, P. He, and Z. Yue: J. Alloys Compd., 2022, vol. 890, 161710.

    Article  CAS  Google Scholar 

  5. W. Xia, X. Zhao, L. Yue, and Z. Zhang: J. Alloys Compd., 2020, vol. 819, 152954.

    Article  CAS  Google Scholar 

  6. E.A. Estrada Rodas, S. Gorgannejad, and R.W. Neu: Fatigue Fract. Eng. Mater. Struct., 2019, vol. 42, pp. 2155–71.

    Article  CAS  Google Scholar 

  7. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2008.

    Google Scholar 

  8. T.M. Pollock and S. Tin: J. C. power, 2006, vol. 22, pp. 361–74.

    CAS  Google Scholar 

  9. D. Szeliga, K. Kubiak, A. Burbelko, and M. Motyka: J. Sieniawski, 2014, vol. 23, pp. 1088–95.

    CAS  Google Scholar 

  10. H. Long, S. Mao, Y. Liu, Z. Zhang, and X. Han: J. Alloys Compd., 2018, vol. 743, pp. 203–20.

    Article  CAS  Google Scholar 

  11. W. Xia, X. Zhao, L. Yue, and Z. Zhang: J. Mater. Sci. Technol., 2020, vol. 44, pp. 76–95.

    Article  CAS  Google Scholar 

  12. M.S.A. Karunaratne, D.C. Cox, P. Carter, and R.C. Reed: Superalloys, 2000, vol. 2000, pp. 263–72.

    Google Scholar 

  13. K.Y. Cheng, C.Y. Jo, D.H. Kim, T. Jin, and Z.Q. Hu: Mater. Charact., 2008, vol. 60, pp. 210–18.

    Article  Google Scholar 

  14. H. Yu, W. Xu, and S. Van Der Zwaag: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 406–16.

    Article  Google Scholar 

  15. G.L. Erickson: JOM, 1995, vol. 47, pp. 36–39.

    Article  CAS  Google Scholar 

  16. K. Harris and J.B. Wahl: Proc. Int. Symp. Superalloys, 2004, pp. 45–52.

  17. B. Wahlmann, F. Galgon, A. Stark, S. Gayer, N. Schell, P. Staron, and C. Koerner: Acta Mater., 2019, vol. 180, pp. 84–96.

    Article  CAS  Google Scholar 

  18. A. Ma, D. Dye, and R.C. Reed: Acta Mater., 2008, vol. 56, pp. 1657–70.

    Article  CAS  Google Scholar 

  19. H. Zhang, Q. Wang, X. Gong, T. Wang, W. Zhang, K. Chen, C. Wang, Y. Liu, and Q. Wang: J. Alloys Compd., 2021, vol. 866, 158878.

    Article  CAS  Google Scholar 

  20. Q. Li, J. Shen, L. Qin, and Y. Xiong: J. Mater. Process. Technol., 2019, vol. 274, 116308.

    Article  CAS  Google Scholar 

  21. C. Körner, M. Ramsperger, C. Meid, D. Bürger, P. Wollgramm, M. Bartsch, and G. Eggeler: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3781–92.

    Article  Google Scholar 

  22. T. Isensee and D. Tourret: Acta Mater., 2022, p. 118035.

  23. G. Matache, D.M. Stefanescu, C. Puscasu, and E. Alexandrescu: Int. J. Cast Met. Res., 2016, vol. 29, pp. 303–16.

    Article  CAS  Google Scholar 

  24. R.C. Reed, T. Tao, and N. Warnken: Acta Mater., 2009, vol. 57, pp. 5898–5913.

    Article  CAS  Google Scholar 

  25. A. Szczotok and B. Chmiela: J. Mater. Eng. Perform., 2014, vol. 23, pp. 2739–47.

    Article  CAS  Google Scholar 

  26. Y. Zhao, M. Zhang, L. Yang, Y. Guo, J. Zhang, H. Lu, Y. Chen, and D. Tang: Prog. Nat. Sci. Mater. Int., 2021, vol. 31, pp. 493–500.

    Article  CAS  Google Scholar 

  27. G. Liu, L. Liu, C. Ai, B. Ge, J. Zhang, and H. Fu: J. Alloys Compd., 2011, vol. 509, pp. 5866–72.

    Article  CAS  Google Scholar 

  28. M. Lamm and R.F. Singer: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1177–83.

    Article  CAS  Google Scholar 

  29. C. Ai, J. Zhou, S. Li, H. Zhang, Y. Pei, and S. Gong: J. Alloys Compd., 2016, vol. 660, pp. 159–65.

    Article  CAS  Google Scholar 

  30. N. Ren, J. Li, B. Wang, L. Zeng, M. Xia, and J. Li: Mater. Des., 2021, vol. 198, 109347.

    Article  CAS  Google Scholar 

  31. K. Gancarczyk, M. Zubko, A. Hanc-kuczkowska, B. Ko, R. Albrecht, D. Szeliga, M. Motyka, W. Ziaja, and J. Sieniawski: Materials, 2019, vol. 12, pp. 1–14.

    Article  Google Scholar 

  32. A. Mirak and M. Fathi: Mater. Charact., 2022, vol. 194, 112449.

    Article  CAS  Google Scholar 

  33. B.C. Wilson, E.R. Cutler, and G.E. Fuchs: Mater. Sci. Eng. A, 2008, vol. 479, pp. 356–64.

    Article  Google Scholar 

  34. P. Hallensleben, H. Schaar, P. Thome, N. Jöns, A. Jafarizadeh, I. Steinbach, G. Eggeler, and J. Frenzel: Mater. Des., 2017, vol. 128, pp. 98–111.

    Article  CAS  Google Scholar 

  35. P. Hallensleben, F. Scholz, P. Thome, H. Schaar, I. Steinbach, G. Eggeler, and J. Frenzel: Crystals, 2019, vol. 9, p. 149.

    Article  Google Scholar 

  36. A.B. Parsa, P. Wollgramm, H. Buck, C. Somsen, A. Kostka, I. Povstugar, P.P. Choi, D. Raabe, A. Dlouhy, J. Müller, E. Spiecker, K. Demtroder, J. Schreuer, K. Neuking, and G. Eggeler: Adv. Eng. Mater., 2015, vol. 17, pp. 216–30.

    Article  CAS  Google Scholar 

  37. F. Scholz, M. Cevik, P. Hallensleben, P. Thome, G. Eggeler, and J. Frenzel: Materials, 2021, vol. 14, p. 4904.

    Article  CAS  Google Scholar 

  38. O.M. Horst, D. Adler, P. Git, H. Wang, J. Streitberger, M. Holtkamp, N. Jöns, R.F. Singer, C. Körner, and G. Eggeler: Mater. Des., 2020, vol. 195, 108976.

    Article  CAS  Google Scholar 

  39. I. Lopez-Galilea, J. Koßmann, A. Kostka, R. Drautz, L. Mujica Roncery, T. Hammerschmidt, S. Huth, and W. Theisen: J. Mater. Sci., 2016, vol. 51, pp. 2653–64.

    Article  CAS  Google Scholar 

  40. R. Rettig, K. Matuszewski, A. Müller, H.E. Helmer, N.C. Ritter, and R.F. Singer: Studies, 2016, vol. 21, p. 23.

    Google Scholar 

  41. J. Rame, S. Utada, L.M. Bortoluci Ormastroni, L. Mataveli-Suave, E. Menou, L. Després, P. Kontis, and J. Cormier: in Superalloys 2020: Proceedings of the 14th International Symposium on Superalloys, Springer, 2020, pp. 71–81.

  42. ASTM E3-95: ASTM Int., 2016, vol. 82, pp. 1–15.

  43. G.M. Pharr and W.C. Oliver: J. Mater. Res., 1992, vol. 7, pp. 613–17.

    Article  CAS  Google Scholar 

  44. C.L. Brundidge, D. Van Drasek, B. Wang, and T.M. Pollock: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 965–76.

    Article  Google Scholar 

  45. F. Wang, D. Ma, J. Zhang, S. Bogner, and A. Bührig-polaczek: Mater. Charact., 2015, vol. 101, pp. 20–25.

    Article  CAS  Google Scholar 

  46. F. Wang, D. Ma, J. Zhang, L. Liu, J. Hong, S. Bogner, and A. Bührig-Polaczek: J. Cryst. Growth, 2014, vol. 389, pp. 47–54.

    Article  CAS  Google Scholar 

  47. B.C. Wilson, J.A. Hickman, and G.E. Fuchs: JOM, 2003, vol. 55, pp. 35–40.

    Article  CAS  Google Scholar 

  48. M.L. Clemens, A.R. Price, and R.S. Bellows: Adv. Mater. Process. Gas Turbines, 2002, pp. 111–18.

  49. M. Krčmar, C.L. Fu, A. Janotti, and R.C. Reed: Acta Mater., 2005, vol. 53, pp. 2369–76.

    Article  Google Scholar 

  50. Y. Li, Z. Jia, W. Tang, X. Liang, W. Xu, and Y. Zhao: Adv. Eng. Mater., 2020, vol. 22, p. 1901151.

    Article  CAS  Google Scholar 

  51. G.E. Fuchs: Mater. Sci. Eng. A, 2001, vol. 300, pp. 52–60.

    Article  Google Scholar 

  52. S.R. Hegde, R.M. Kearsey, and J. Beddoes: TMS, Superalloys.

  53. M. Ramsperger, R.F. Singer, and C. Körner: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1469–80.

    Article  Google Scholar 

  54. A. Szczotok and R. Przeliorz: IOP Conf. Ser. Mater. Sci. Eng., https://doi.org/10.1088/1757-899X/35/1/012005.

  55. H.T. Pang, N. D’souza, H. Dong, H.J. Stone, and C.M.F. Rae: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 889–906.

    Article  Google Scholar 

  56. S. Steuer, P. Villechaise, T.M. Pollock, and J. Cormier: Mater. Sci. Eng. A, 2015, vol. 645, pp. 109–115.

    Article  CAS  Google Scholar 

  57. M. Shahwaz, P. Nath, and I. Sen: J. Alloys Compd., 2022, p. 164530.

  58. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Science, 2004, vol. 305, pp. 986–89.

    Article  CAS  Google Scholar 

  59. G.M. Pharr, E.G. Herbert, and Y. Gao: Annu. Rev. Mater. Res., 2010, vol. 40, pp. 271–92.

    Article  CAS  Google Scholar 

  60. W.D. Nix and H. Gao: J. Mech. Phys. Solids.

  61. M.A. Mattucci, I. Cherubin, P. Changizian, T. Skippon, and M.R. Daymond: Acta Mater., 2021, vol. 207, 116702.

    Article  CAS  Google Scholar 

  62. X. Qiu, Y. Huang, W.D. Nix, K.C. Hwang, and H. Gao: Acta Mater., 2001, vol. 49, pp. 3949–58.

    Article  CAS  Google Scholar 

  63. P. Changizian, A. Brooks, Z. Yao, and M.R. Daymond: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 498–514.

    Article  Google Scholar 

  64. S. Kumar, I.A. Kumar, L. Marandi, and I. Sen: Acta Mater., 2020, vol. 201, pp. 303–15.

    Article  Google Scholar 

  65. F. Pöhl: Sci. Rep., 2019, vol. 9, pp. 1–12.

    Article  Google Scholar 

  66. X. Lu, Y. Ma, D. Peng, R. Johnsen, and D. Wang: J. Mater. Sci. Technol., 2023, vol. 135, pp. 156–69.

    Article  CAS  Google Scholar 

  67. S. Jiapeng, L. Cheng, J. Han, A. Ma, and L. Fang: Sci. Rep., 2017, vol. 7, pp. 1–12.

    Article  Google Scholar 

  68. J. Ruzic, K. Goto, I. Watanabe, T. Osada, L. Wu, and T. Ohmura: Mater. Sci. Eng. A, 2021, vol. 818, 141439.

    Article  CAS  Google Scholar 

  69. D.J. Crudden, A. Mottura, N. Warnken, B. Raeisinia, and R.C. Reed: Acta Mater., 2014, vol. 75, pp. 356–70.

    Article  CAS  Google Scholar 

  70. S. Tian, J. Wu, D. Shu, Y. Su, H. Yu, and B. Qian: Mater. Sci. Eng. A, 2014, vol. 616, pp. 260–67.

    Article  CAS  Google Scholar 

  71. T. Ichitsubo, D. Koumoto, M. Hirao, K. Tanaka, M. Osawa, T. Yokokawa, and H. Harada: Acta Mater., 2003, vol. 51, pp. 4033–44.

    Article  CAS  Google Scholar 

  72. P. Zhang, Y. Yuan, B. Li, S.W. Guo, G.X. Yang, and X.L. Song: Mater. Sci. Eng. A, 2016, vol. 655, pp. 152–59.

    Article  CAS  Google Scholar 

  73. Z.W. Lian, J.J. Yu, X.F. Sun, H.R. Guan, and Z.Q. Hu: Mater. Sci. Eng. A, 2008, vol. 489, pp. 227–33.

    Article  Google Scholar 

  74. T. Ning, T. Sugui, Y. Huajin, S. Delong, Z. Shunke, and Z. Guoqi: Mater. Sci. Eng. A, 2019, vol. 744, pp. 154–62.

    Article  CAS  Google Scholar 

  75. J. Zhang, T. Huang, K. Cao, J. Chen, H. Zong, D. Wang, J. Zhang, J. Zhang, and L. Liu: J. Mater. Sci. Technol., 2021, vol. 75, pp. 68–77.

    Article  CAS  Google Scholar 

  76. J.S. Van Sluytman and T.M. Pollock: Acta Mater., 2012, vol. 60, pp. 1771–83.

    Article  Google Scholar 

Download references

Acknowledgments

PN, SR, and IS acknowledge the Central Research Facility of IIT Kharagpur for required research facilities. IS acknowledges the support by Alexander von Humboldt Foundation through renewed research stay, for the collaboration with Ruhr University, Bochum, Germany. FS acknowledges funding from the Alexander von Humboldt Foundation through a Feodor Lynen Research Fellowship. FS, JP, JF, and GE acknowledges the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) for funding through the collaborative research center SFB TR 103, projects B5 and B7 (see: www.sfb-transregio103.de).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrani Sen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, P., Scholz, F., Pfetzing, J. et al. Influence of Microstructural Homogenization on the Localized Deformation Behavior of Single-Crystal Ni-Based Superalloy, CMSX-4. Metall Mater Trans A 54, 4498–4514 (2023). https://doi.org/10.1007/s11661-023-07183-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07183-w

Navigation