Skip to main content
Log in

Hot Deformation Behavior and Microstructure of Cast Ni-Based Superalloy IN-100 Based on the Processing Map

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hot compression tests were performed on a cast Ni-based superalloy IN-100 at various temperatures and strain rate ranges. From the flow stress-true strain curves and the microstructure observations, a processing map of the hot deformation was constructed based on the dynamic material model. At 1473 K, flow stresses showed a plateau region resembling the characteristics of a dynamic recovery, although values varied with the strain rate. The crystal orientation rotated from the initial <001> direction parallel to the compression axis to the <101> direction, which is the primary slip direction of the fcc system. Kink band formation was observed perpendicular to the compression axis, and fine discontinuous dynamic recrystallization at the boundary of the kink bands was observed for the slow strain rate. As the strain rate increased, meta-dynamic recrystallization was observed after the compression test. At 1373 K, the flow stress first increased sharply and then decreased gradually with increasing strain over the whole strain rate. Twin deformation was suggested to occur prior to the appearance of dynamic recrystallization under 1373 K for the low strain rate range. The stable region of hot deformation was considered to be located at approximately 1423 K and 0.003 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. C.T. Sims: Superalloys 1984, TMS-AIME, Warrendale, 1984, pp. 399–419.

    Google Scholar 

  2. R.F. Fawley: in The superalloys. C.T. Sims and W.C. Hagel, eds., Wiley, Hoboken, 1972, p. 3.

    Google Scholar 

  3. A.M. Wusatowska-Sarnek, G. Ghosh, G.B. Olson, M.J. Blackburn, and M. Aindow: J. Mater. Res., 2003, vol. 18, pp. 2653–63.

    Article  CAS  Google Scholar 

  4. R. Athey, and J. Moore: "Progress report on the gatorizing™ forging process, SAE Technical Paper 751047, 1975.

  5. A. Ota, N. Ueshima, K. Oikawa, and S. Imano: in Proceedings of the 9th international symposium on superalloy 718 & derivatives, 2018, pp. 987–99.

  6. Y. Li, X. Ye, J. Li, Y. Zhang, Y. Koizumi, and A. Chiba: Mater. Des., 2017, vol. 122, pp. 340–46.

    Article  CAS  Google Scholar 

  7. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker: Metall. Trans. A, 1984, vol. 15, pp. 1883–92.

    Article  Google Scholar 

  8. Y.V.R.K. Prasad: J. Mater. Eng. Perform., 2003, vol. 12, pp. 638–45.

    Article  CAS  Google Scholar 

  9. E. Onodera, S. Kurosu, Y. Li, H. Matsumoto, and A. Chiba: J. JSTP, 2010, vol. 51, pp. 227–32.

    Article  CAS  Google Scholar 

  10. M.C. Somani, K. Muraleedharan, Y.V.R.K. Prasad, and V. Singh: Mater. Sci. Eng. A, 1998, vol. 245, pp. 88–99.

    Article  Google Scholar 

  11. D. Rittel, L.H. Zhang, and S. Osovsk: J. Mech. Phys. Solids, 2017, vol. 107, pp. 96–114.

    Article  CAS  Google Scholar 

  12. H. Monajati, A.K. Taheri, M. Jahazi, and S. Yue: Metall. Mater. Trans. A, 2005, vol. 36, pp. 895–905.

    Article  Google Scholar 

  13. Y. Li, E. Onodera, H. Matsumoto, K. Yamanaka, and A. Chiba: J. JSTP, 2010, vol. 51, pp. 221–26.

    Article  CAS  Google Scholar 

  14. F. Montheillet, J.J. Jonas, and K.W. Neale: Metall. Mater. Trans. A, 1996, vol. 27, pp. 232–35.

    Article  Google Scholar 

  15. B. Nithin, K. Chattopadhyay, and G. Phanikumar: Metall. Mater. Trans. A, 2018, vol. 49, pp. 4895–4905.

    Article  CAS  Google Scholar 

  16. H. Khorshidi, A. Kermanpur, H. Rastegari, E. Ghassemali, and M.C. Somani: Mater. Today Commun., 2021, vol. 27, p. 102352.

    Article  CAS  Google Scholar 

  17. H. Ziegler: in Progress in solid mechanics, vol. 4, N. Sneddon and R. Hill, eds., North-Holland, Amsterdam, 1963, pp. 93–193.

    Google Scholar 

  18. H. Ziegler: in Progress in solid mechanics, vol. 4, I.N. Sneddon and R. Hill, eds., Wiley, New York, 1965, p. 191.

    Google Scholar 

  19. C.M. Sellars and W.J. McTegart: Acta Metall., 1966, vol. 14, pp. 1136–38.

    Article  CAS  Google Scholar 

  20. C. Phaniraj, D. Samantaray, S. Mandal, and A.K. Bhaduri: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6066–71.

    Article  CAS  Google Scholar 

  21. F. Kniepmeier, M. Gruendler, and H. Helfmaier: Z. Metallkd., 1976, vol. 67, pp. 533–37.

    Google Scholar 

  22. Q.L. Pan, B. Li, Y. Wang, Y.W. Zhang, and Z.M. Yin: Mater. Sci. Eng. A, 2013, vol. 585, pp. 371–78.

    Article  CAS  Google Scholar 

  23. S.A. Sajjadi, A. Chaichi, H.R. Ezatpour, A. Maghsoudlou, and M.A. Kalaie: J. Mater. Eng. Perform., 2016, vol. 25, pp. 1269–75.

    Article  CAS  Google Scholar 

  24. L. Ouyang, R. Luo, Y. Gui, Y. Cao, L. Chen, Y. Gui, H. Bian, K. Aoyagi, K. Yamanaka, and A. Chiba: Mater. Sci. Eng. A, 2020, vol. 788, p. 139638.

    Article  CAS  Google Scholar 

  25. T. Sakai and M. Ohashi: Mater. Sci. Technol., 1990, vol. 6, pp. 1251–57.

    Article  CAS  Google Scholar 

  26. T. Sakai, A. Belyakov, U. Kaibyshev, H. Miura, and J.J. Jonas: Prog. Mater. Sci., 2014, vol. 60, pp. 130–207.

    Article  CAS  Google Scholar 

  27. K. Huang and R.E. Logé: Mater. Des., 2016, vol. 111, pp. 548–74.

    Article  CAS  Google Scholar 

  28. K. Hagihara, R. Ueyama, M. Yamasaki, Y. Kawamura, and T. Nakano: Acta Mater., 2021, vol. 209, p. 116797.

    Article  CAS  Google Scholar 

  29. K. Hagihara, T. Okamoto, M. Yamasaki, Y. Kawamura, and T. Nakano: Scripta Mater., 2016, vol. 117, pp. 32–36.

    Article  CAS  Google Scholar 

  30. M. Eskandari, M.A. Mohtadi-Bonab, A. Zarei-Hanzaki, J.A. Szpunar, and L.P. Karjalainen: Adv. Eng. Mater., 2018, vol. 20, p. 1800327.

    Article  Google Scholar 

  31. K. Higashida, J. Takamura, and N. Narita: Mater. Sci. Eng., 1986, vol. 81, pp. 239–58.

    Article  CAS  Google Scholar 

  32. S. Zherebtsov, N. Yurchenko, D. Shaysultanov, M. Tikhonovsky, G. Salishchev, and N. Stepanov: Adv. Eng. Mater., 2018, vol. 20, p. 1800327.

    Article  Google Scholar 

  33. J. Takamura: Bull. Jpn. Inst. Met., 1986, vol. 25, pp. 379–91.

    Article  CAS  Google Scholar 

  34. P. Poelt, C. Sommitsch, S. Mitsche, and M. Walter: Mater. Sci. Eng. A, 2006, vol. 420, pp. 306–14.

    Article  Google Scholar 

  35. T. Sakai, M. Ohashi, K. Chiba, and J.J. Jonas: Acta Metall., 1988, vol. 36, pp. 1781–89.

    Article  CAS  Google Scholar 

  36. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7, pp. 1897–1904.

    Google Scholar 

  37. P. Caron: Proc. of the 9th int. symp. on superalloys, 2000, pp. 737–46.

  38. A.P. Miodownik: Calphad, 1978, vol. 2, pp. 207–26.

    Article  CAS  Google Scholar 

  39. M. Koyama, T. Sawaguchi, and K. Tsuzaki: Tetsu to Hagane, 2014, vol. 100, pp. 1253–60.

    Article  CAS  Google Scholar 

  40. A. Chiba, S. Lee, H. Matsumoto, and M. Nakamura: Mater. Sci. Eng. A, 2009, vol. 513–514, p. 286.

    Article  Google Scholar 

  41. K. Yamanaka, M. Mori, S. Sato, and A. Chiba: Sci. Rep., 2017, vol. 7, p. 10808.

    Article  Google Scholar 

  42. M. Schneider and G. Laplanche: Acta. Mater., 2021, vol. 204, p. 116470.

    Article  CAS  Google Scholar 

  43. T.S. Byun: Acta. Mater., 2003, vol. 51, pp. 3063–71.

    Article  CAS  Google Scholar 

  44. L. Remy: Acta Metall., 1977, vol. 26, pp. 443–51.

    Article  Google Scholar 

  45. J. Kear and J. Oblak: J. Pyhs. Colloq., 1974, vol. 35, pp. 35–45.

    Google Scholar 

  46. M. Kolbe: Mater. Sci. Eng., 2001, vol. A319–321, pp. 383–87.

    Article  Google Scholar 

  47. L. Kovarik, R.R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang, and M.J. Mills: Prog. Mater. Sci., 2009, vol. 54, pp. 839–73.

    Article  CAS  Google Scholar 

  48. D. Barba, E. Alabort, S. Pedrazzini, D.M. Collins, A.J. Wilkinson, P.A.J. Bagot, M.P. Moody, C. Atkinson, A. Jérusalem, and R.C. Reed: Acta Mater., 2017, vol. 135, pp. 314–29.

    Article  CAS  Google Scholar 

  49. D. Barba, S. Pedrazzini, A. Vilalta-Clemente, A.J. Wilkinson, M.P. Moody, P.A.J. Bagot, A. Jérusalem, and R.C. Reed: Scripta Mater., 2017, vol. 127, pp. 37–40.

    Article  CAS  Google Scholar 

  50. A. Guimier and J.L. Strudel: Proceedings of the 2nd international conference on strength of metals and alloys, ASM, Metals Park, 1970, p. 1145.

    Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusaku Hasebe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasebe, Y., Hagisawa, T., Yang, C. et al. Hot Deformation Behavior and Microstructure of Cast Ni-Based Superalloy IN-100 Based on the Processing Map. Metall Mater Trans A 54, 4456–4471 (2023). https://doi.org/10.1007/s11661-023-07178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07178-7

Navigation