Skip to main content

Advertisement

Log in

A Novel Biomedical Ti–35Nb–15Zr (At. Pct) Alloy In Situ Fabricated by Laser Powder Bed Fusion: Processing Window, Microstructure, and Mechanical Properties

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Commercial load-bearing implant applications have detrimental stress-shielding effects. In this study, the molybdenum equivalence (Moeq) and molecular orbital methods were used in the composition design of low modulus Ti–35Nb–15Zr (at. pct) alloys. Based on Taguchi’s experimental design, the relationship between the process parameters (laser power, scanning speed, hatch spacing) and the performance (surface quality, porosity, and mechanical properties) of the sample fabricated by LPBF with a small spot diameter (30 μm) was studied. The use of EL is more effective in determining the process window. A surface roughness below 3 µm, porosity of less than 1 pct, and hardness of up to 391 HV of the samples were obtained at a laser power of 250 to 300 W, scanning speed of 400 to 600 mm/s, and hatch spacing of 35 µm. Ti–35Nb–15Zr (at. pct) alloys with Young’s modulus of 72.82 ± 0.77 GPa and yield strength of 1185.18 ± 41.79 MPa were obtained at a laser power of 250 W, and the values of both increased with the increasing laser power. The intensity of the β texture was also revealed to be related to the hatch spacing. As the hatch spacing increases, the intensity of β-texture decreases from 4.87 to 1.83 times from H35 to H60. Additionally, the correlations between process parameters and resultant properties were defined in study. The scan speed showed the highest correlation with surface roughness, porosity, and hardness, while the hatch spacing mainly affected surface roughness and hardness. Laser power had decreasing effects on porosity, surface roughness, and hardness in that order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. N. Azgomi, F. Tetteh, and S. Boakye-Yiadom: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 1069–84.

    Article  Google Scholar 

  2. B. Moretti, V. Pesce, G. Maccagnano, G. Vicenti, P. Lovreglio, L. Soleo, and P. Apostoli: The Lancet, 2012, vol. 379, p. 1676.

    Article  Google Scholar 

  3. A. Mirza, A. King, C. Troakes, and C. Exley: J. Trace Elem. Med Biol., 2017, vol. 40, pp. 30–36.

    Article  CAS  Google Scholar 

  4. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia: Prog. Mater Sci., 2009, vol. 54, pp. 397–425.

    Article  CAS  Google Scholar 

  5. C.-W. Kang and F.-Z. Fang: Adv. Manuf., 2018, vol. 6, pp. 20–40.

    Article  CAS  Google Scholar 

  6. S. Ozan, J. Lin, Y. Li, R. Ipek, and C. Wen: Acta Biomater., 2015, vol. 20, pp. 176–87.

    Article  CAS  Google Scholar 

  7. J.C. Wang, Y.J. Liu, P. Qin, S.X. Liang, T.B. Sercombe, and L.C. Zhang: Mater. Sci. Eng. A, 2019, vol. 760, pp. 214–24.

    Article  CAS  Google Scholar 

  8. Z. X. Wenhui Yu, X. Zhang, Y. Sun, P. Xue, S. Tan, Y. Wu, H. Zheng: Mater. Sci. Addit. Manuf. (2022).

  9. L.M. Elias, S.G. Schneider, S. Schneider, H.M. Silva, and F. Malvisi: Mater. Sci. Eng. A, 2006, vol. 432, pp. 108–12.

    Article  Google Scholar 

  10. M.H.C. Tan, A.D. Baghi, R. Ghomashchi, W. Xiao, and R.H. Oskouei: J. Mech. Behav. Biomed. Mater., 2019, vol. 99, pp. 78–85.

    Article  CAS  Google Scholar 

  11. H.-C. Hsu, S.-C. Wu, S.-K. Hsu, J.-Y. Syu, and W.-F. Ho: Mater. Sci. Eng. A, 2013, vol. 568, pp. 1–7.

    Article  CAS  Google Scholar 

  12. D. Doraiswamy and S. Ankem: Acta Mater., 2003, vol. 51, pp. 1607–19.

    Article  CAS  Google Scholar 

  13. Y.L. Hao, S.J. Li, S.Y. Sun, and R. Yang: Mater. Sci. Eng. A, 2006, vol. 441, pp. 112–18.

    Article  Google Scholar 

  14. M. Abdel-Hady, K. Hinoshita, and M. Morinaga: Scripta Mater., 2006, vol. 55, pp. 477–80.

    Article  CAS  Google Scholar 

  15. S.-J. Dai, Y. Wang, F. Chen, X.-Q. Yu, and Y.-F. Zhang: Trans. Nonferr. Met. Soc. China, 2013, vol. 23, pp. 3027–32.

    Article  CAS  Google Scholar 

  16. R. Karre and S.R. Dey: Encyclopedia of Smart Materials, Elsevier, Amsterdam, 2019, pp. 512–27.

    Book  Google Scholar 

  17. S.L. Sing, S. Huang, G.D. Goh, G.L. Goh, C.F. Tey, J.H.K. Tan, and W.Y. Yeong: Prog. Mater. Sci., 2021, vol. 119, 100795.

    Article  CAS  Google Scholar 

  18. Y.J. Liu, S.J. Li, L.C. Zhang, Y.L. Hao, and T.B. Sercombe: Scripta Mater., 2018, vol. 153, pp. 99–103.

    Article  CAS  Google Scholar 

  19. D.B. Witkin, R.W. Hayes, T.D. McLouth, and G.E. Bean: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 3458–65.

    Article  Google Scholar 

  20. R. Tosi, E. Muzangaza, X.P. Tan, D. Wimpenny, and M.M. Attallah: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 927–41.

    Article  Google Scholar 

  21. T.C. Niemeyer, C.R. Grandini, L.M.C. Pinto, A.C.D. Angelo, and S.G. Schneider: J. Alloy Compd., 2009, vol. 476, pp. 172–75.

    Article  CAS  Google Scholar 

  22. H. Azizi, H. Zurob, B. Bose, S.R. Ghiaasiaan, X. Wang, S. Coulson, V. Duz, and A.B. Phillion: Addit. Manuf., 2018, vol. 21, pp. 529–35.

    CAS  Google Scholar 

  23. B. Zhang, S. Zhang, H. Yang, D. Peng, Y. Wang, and H. Zhu: J. Manuf. Process., 2022, vol. 84, pp. 1150–61.

    Article  Google Scholar 

  24. C. Schwerz, F. Schulz, E. Natesan, and L. Nyborg: J. Manuf. Process., 2022, vol. 78, pp. 231–41.

    Article  Google Scholar 

  25. S. Pilz, T. Gustmann, F. Günther, M. Zimmermann, U. Kühn, and A. Gebert: Mater. Des., 2022, vol. 216, 110516.

    Article  CAS  Google Scholar 

  26. H. Zhang, C. Zhou, and C. Wei: J. Mater. Process. Technol., 2018, vol. 254, pp. 1–12.

    Article  Google Scholar 

  27. R. Li, M. Wang, T. Yuan, B. Song, C. Chen, K. Zhou, and P. Cao: Powder Technol., 2017, vol. 319, pp. 117–28.

    Article  CAS  Google Scholar 

  28. X. Li, Y. Liu, and Z. Zhou: J. Manuf. Process., 2022, vol. 81, pp. 78–91.

    Article  Google Scholar 

  29. W. Shao, B. He, C. Qiu, and Z. Li: Opt. Laser Technol., 2022, vol. 156, 108609.

    Article  CAS  Google Scholar 

  30. S. Qu, J. Ding, J. Fu, M. Fu, B. Zhang, and X. Song: Addit. Manuf., 2021, vol. 48, 102417.

    CAS  Google Scholar 

  31. G.H. Zhao, X.Z. Liang, B. Kim, and P.E.J. Rivera-Díaz-del-Castillo: Mater. Sci. Eng. A, 2019, vol. 756, pp. 156–60.

    Article  CAS  Google Scholar 

  32. M.-W. Wu and P.-H. Lai: Mater. Sci. Eng. A, 2016, vol. 658, pp. 429–38.

    Article  CAS  Google Scholar 

  33. C. Panwisawas, C.L. Qiu, Y. Sovani, J.W. Brooks, M.M. Attallah, and H.C. Basoalto: Scripta Mater., 2015, vol. 105, pp. 14–17.

    Article  CAS  Google Scholar 

  34. B. Feng, C. Wang, Q. Zhang, Y. Ren, L. Cui, Q. Yang, and S. Hao: Mater. Sci. Eng. A, 2022, vol. 840, 142965.

    Article  CAS  Google Scholar 

  35. X.P. Song, L. You, B. Zhang, and A. Song: Mater. Technol., 2012, vol. 27, pp. 55–57.

    Article  CAS  Google Scholar 

  36. R. Duan, S. Li, B. Cai, W. Zhu, F. Ren, and M.M. Attallah: Addit. Manuf., 2021, vol. 37, 101708.

    CAS  Google Scholar 

  37. S.H. Lee, M. Todai, M. Tane, K. Hagihara, H. Nakajima, and T. Nakano: J. Mech. Behav. Biomed. Mater., 2012, vol. 14, pp. 48–54.

    Article  Google Scholar 

  38. Q. Wei, L. Wang, Y. Fu, J. Qin, W. Lu, and D. Zhang: Mater. Des., 2011, vol. 32, pp. 2934–39.

    Article  CAS  Google Scholar 

  39. F.N. Depboylu, E. Yasa, Ö. Poyraz, J. Minguella-Canela, F. Korkusuz, and M.A. De los Santos López: J. Mater. Res. Technol., 2022, vol. 17, pp. 1408–26.

    Article  CAS  Google Scholar 

  40. M. Shahedi Asl, S.A. Delbari, M. Azadbeh, A. Sabahi Namini, M. Mehrabian, V.-H. Nguyen, Q.V. Le, M. Shokouhimehr, and M. Mohammadi: J. Mater. Res. Technol., 2020, vol. 9, pp. 10647–58.

    Article  Google Scholar 

  41. Y. Chen, P. Han, A. Dehghan-Manshadi, D. Kent, S. Ehtemam-Haghighi, C. Jowers, M. Bermingham, T. Li, J. Cooper-White, and M.S. Dargusch: J. Mech. Behav. Biomed. Mater., 2020, vol. 104, 103691.

    Article  CAS  Google Scholar 

  42. D. Cai, X. Zhao, L. Yang, R. Wang, G. Qin, D.-F. Chen, and E. Zhang: J. Mater. Sci. Technol., 2021, vol. 81, pp. 13–25.

    Article  CAS  Google Scholar 

  43. T. Lee, Y.-U. Heo, and C.S. Lee: Scripta Mater., 2013, vol. 69, pp. 785–88.

    Article  CAS  Google Scholar 

  44. R. Ummethala, P.S. Karamched, S. Rathinavelu, N. Singh, A. Aggarwal, K. Sun, E. Ivanov, L. Kollo, I. Okulov, J. Eckert, and K.G. Prashanth: Materialia, 2020, vol. 14, 100941.

    Article  CAS  Google Scholar 

  45. E. Chlebus, B. Kuźnicka, T. Kurzynowski, and B. Dybała: Mater. Charact., 2011, vol. 62, pp. 488–95.

    Article  CAS  Google Scholar 

  46. H. Schwab, K.G. Prashanth, L. Lober, U. Kuhn, and J. Eckert: Metals, 2015, vol. 5, pp. 686–94.

    Article  Google Scholar 

  47. Q. Wang, C.J. Han, T. Choma, Q.S. Wei, C.Z. Yan, B. Song, and Y.S. Shi: Mater. Des., 2017, vol. 126, pp. 268–77.

    Article  CAS  Google Scholar 

  48. J.M. Walker, C. Haberland, M.T. Andani, H.E. Karaca, D. Dean, and M. Elahinia: J. Intel. Mater. Syst. Str., 2016, vol. 27, pp. 2653–60.

    Article  CAS  Google Scholar 

  49. C. Haberland, M. Elahinia, J.M. Walker, H. Meier, and J. Frenzel: Smart Mater. Struct., 2014, vol. 23, p. 104002.

    Article  Google Scholar 

  50. Z. Zhao, C. Wang, Q. Yu, L. Song, G. Yang, and J. Zhang: Mater. Charact., 2022, vol. 189, 111917.

    Article  CAS  Google Scholar 

  51. L. You and X. Song: Scripta Mater., 2012, vol. 67, pp. 57–60.

    Article  CAS  Google Scholar 

  52. N. Sakaguch, M. Niinomi, and T. Akahori: Mater. Trans., 2004, vol. 45, pp. 1113–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Open Fund (No. 202101) of Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, P.R. China, and the Innovation Project of Guangxi Graduate Education (Grant No. JGY2021001). Yurong Wang acknowledged Dr. Liang for the discussion during the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JZ contributed to conceptualization, writing—review & editing. YW contributed to writing—original draft, writing—review & editing, investigation, and validation. GZ contributed to data curation. LH contributed to supervision.

Corresponding author

Correspondence to Lugui He.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Wang, Y., Zhi, G. et al. A Novel Biomedical Ti–35Nb–15Zr (At. Pct) Alloy In Situ Fabricated by Laser Powder Bed Fusion: Processing Window, Microstructure, and Mechanical Properties. Metall Mater Trans A 54, 4356–4371 (2023). https://doi.org/10.1007/s11661-023-07170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07170-1

Navigation