Skip to main content
Log in

Ultrafine-Grained Microstructure Development in Cu/Fe Multilayered Sheet During Cooling

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Characteristic ultrafine-grained (UFGed) microstructure was developed in the Cu/Fe multilayered sheet annealed at 1123 K and then air-cooled, whereas no UFGed microstructure was observed in the one furnace-cooled. Therefore, the UFGed microstructure is developed during cooling and cooling rate plays an essential role for UFGed microstructure formation in Cu/Fe multilayered sheet. Thermal stress derived from the difference in the thermal expansion coefficients of the layers must be the factor for UFGed microstructure formation during cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. H.R. Jafarian, M.M. Mahdavian, S.A.A. Shams, and A.R. Eivani: Mater. Sci. Eng. A, 2021, vol. 805, p. 140556. https://doi.org/10.1016/j.msea.2020.140556.

    Article  CAS  Google Scholar 

  2. T. Koseki, J. Inoue, and S. Nambu: Mater. Trans., 2014, vol. 55, pp. 227–37. https://doi.org/10.2320/matertrans.M2013382.

    Article  CAS  Google Scholar 

  3. Y. Sun, Y. Chen, N. Tsuji, and S. Guan: J. Alloys Compd., 2020, vol. 819, p. 152956. https://doi.org/10.1016/j.jallcom.2019.152956.

    Article  CAS  Google Scholar 

  4. D.R. Lesuer, C.K. Syn, O.D. Sherby, J. Wadsworth, and J.J. Lewandowski: Int. Mater. Rev., 1996, vol. 41, pp. 169–97. https://doi.org/10.1179/imr.1996.41.5.169.

    Article  CAS  Google Scholar 

  5. N. Koga, M. Suzuki, and O. Umezawa: Mater. Sci. Eng. A, 2021, vol. 806, p. 140599. https://doi.org/10.1016/j.msea.2020.140599.

    Article  CAS  Google Scholar 

  6. M. Hosseini, N. Pardis, H.D. Manesh, M. Abbasi, and D.-I. Kim: Mater. Des., 2017, vol. 113, pp. 128–36. https://doi.org/10.1016/j.matdes.2016.09.094.

    Article  CAS  Google Scholar 

  7. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong: Scripta Mater., 1998, vol. 39, pp. 1221–227. https://doi.org/10.1016/S1359-6462(98)00302-9.

    Article  CAS  Google Scholar 

  8. S.A. Hosseini and H.D. Manesh: Mater. Des., 2009, vol. 30, pp. 2911–918. https://doi.org/10.1016/j.matdes.2009.01.012.

    Article  CAS  Google Scholar 

  9. N. Tsuji, R. Ueji, and Y. Minamino: Scripta Mater., 2002, vol. 47, pp. 69–76. https://doi.org/10.1016/S1359-6462(02)00088-X.

    Article  CAS  Google Scholar 

  10. S.H.S. Ebrahimi, K. Dehghani, J. Aghazadeh, M.B. Ghasemian, and S. Zangeneh: Mater. Sci. Eng. A, 2018, vol. 718, pp. 311–20. https://doi.org/10.1016/j.msea.2018.01.130.

    Article  CAS  Google Scholar 

  11. M. Eizadjou, A.K. Talachi, H.D. Manesh, H.S. Shahabi, and K. Janghorban: Compos. Sci. Technol., 2008, vol. 68, pp. 2003–2009. https://doi.org/10.1016/j.compscitech.2008.02.029.

    Article  CAS  Google Scholar 

  12. N. Koga, S. Tomono, and O. Umezawa: Mater. Sci. Eng. A, 2021, vol. 811, p. 141066. https://doi.org/10.1016/j.msea.2021.141066.

    Article  CAS  Google Scholar 

  13. S.I. Wright, M.M. Nowell, and D.P. Field: Microsc. Microanal., 2011, vol. 17, pp. 316–29. https://doi.org/10.1017/S1431927611000055.

    Article  CAS  Google Scholar 

  14. S.C.V. Lim and A.D. Rollett: Mater. Sci. Eng. A, 2009, vol. 520, pp. 189–96. https://doi.org/10.1016/j.msea.2009.05.020.

    Article  CAS  Google Scholar 

  15. M. Yuan, Z. Wang, Y. Yao, and L. Li: Results Phys., 2019, vol. 15, p. 102706. https://doi.org/10.1016/j.rinp.2019.102706.

    Article  Google Scholar 

  16. T. Chartier, D. Merle, and J.L. Besson: J. Eur. Ceram., 1995, vol. 15, pp. 101–107. https://doi.org/10.1016/0955-2219(95)93055-8.

    Article  CAS  Google Scholar 

  17. R.P. Carreker Jr. and W.R. Hibbard Jr.: Acta Mater., 1953, vol. 1, pp. 657–63. https://doi.org/10.1016/0001-6160(53)90022-4.

    Article  Google Scholar 

  18. T.L. Altshulerand and J.W. Christian: J. Phys. A, 1967, vol. 261, pp. 253–87. https://doi.org/10.1098/rsta.1967.0004.

    Article  Google Scholar 

  19. Z. Yanushkevich, A. Belyakov, and R. Kaibyshev: Acta Mater., 2015, vol. 82, pp. 244–54. https://doi.org/10.1016/j.actamat.2014.09.023.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the TOKUSHU KINZOKU EXCEL Co., Ltd. for providing the Cu-Fe laminated sheets used in this study. This work was supported by the Japan Copper and Brass Association, The Japan Institute of Metals and Materials, JKA and its promotion funds from KEIRIN RACE, and the Grant-in-Aid for Scientific Research (KAKENHI) Grant No. 20K14605.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norimitsu Koga.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, R., Koga, N. & Watanabe, C. Ultrafine-Grained Microstructure Development in Cu/Fe Multilayered Sheet During Cooling. Metall Mater Trans A 54, 4203–4207 (2023). https://doi.org/10.1007/s11661-023-07168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07168-9

Navigation