Skip to main content
Log in

X-Ray Tomographic Quantification of Diffusive Growth of Metallic Dendrite in High Magnetic Field

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Suppressing the melt convection in the solidifying ingot is still considered to be a challenging task. By applying a high-magnetic field (HMF), we achieved a diffusive condition for the crystal growth. The atomic interdiffusion coefficient in the Al–Cu melt was measured in the HMF to define the critical magnetic flux density (MFD) for the diffusive crystal growth in the melt. A diffusive growth state was achieved in the melt when the MFD was greater than a critical 2.9 T. The influence of HMF on crystal growth was investigated by X-ray computed tomography. The HMF increased the size of crystal, but it decreased the crystal number and the curvature of dendrite tips as well as the specific surface area of dendrite. A transition of dendritic arms from seaweed to dendrite was observed after applying an HMF. Interface shape distribution maps showed that the HMF increased the proportion of ellipsoid shapes and decreased the proportion of hyperbolic shapes of solid–liquid interface. These were attributed to the decrease of constitutional supercooling caused by the magnetohydrodynamic effect. This work provides a new path to obtain a diffusive condition for crystal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Bogno, H. Nguyen-Thi, A. Buffet, G. Reinhart, B. Billia, N. Mangelinck-Noël, N. Bergeon, J. Baruchel, and T. Schenk: Acta Mater., 2011, vol. 59, pp. 4356–65.

    Article  CAS  Google Scholar 

  2. T. Nelson, B. Cai, N. Warnken, P.D. Lee, E. Boller, O.V. Magdysyuk, and N.R. Green: Scripta Mater., 2020, vol. 180, pp. 29–33.

    Article  CAS  Google Scholar 

  3. H. Nguyen-Thi, Y. Dabo, B. Drevet, M.D. Dupouy, D. Camel, B. Billia, J.D. Hunt, and A. Chilton: J. Cryst. Growth, 2005, vol. 281, pp. 654–68.

    Article  CAS  Google Scholar 

  4. N. Bergeon, G. Reinhart, F.L. Mota, N. Mangelinck-Noël, and H. Nguyen-Thi: Eur. Phys. J. E, 2021, vol. 44, p. 98.

    Article  CAS  Google Scholar 

  5. S. Akamatsu and H. Nguyen-Thi: Acta Mater., 2016, vol. 108, pp. 325–46.

    Article  CAS  Google Scholar 

  6. F. Ngomesse, G. Reinhart, H. Soltani, G. Zimmermann, D.J. Browne, W. Sillekens, and H. Nguyen-Thi: Acta Mater., 2021, vol. 221, p. 117401.

    Article  CAS  Google Scholar 

  7. A.G. Murphy, R.H. Mathiesen, Y. Houltz, J. Li, C. Lockowandt, K. Henriksson, N. Melville, and D.J. Browne: J. Cryst. Growth, 2016, vol. 454, pp. 96–104.

    Article  CAS  Google Scholar 

  8. D.R. Liu, N. Mangelinck-Noël, C.A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen-Thi, and B. Billia: Acta Mater., 2014, vol. 64, pp. 253–65.

    Article  CAS  Google Scholar 

  9. R. Jansen and P.R. Sahm: Mater. Sci. Eng., 1984, vol. 65, pp. 199–212.

    Article  CAS  Google Scholar 

  10. Y.Z. Li, N. Mangelinck-Noel, G. Zimmermann, L. Sturz, and H. Nguyen-Thin: J. Cryst. Growth, 2019, vol. 513, pp. 20–29.

    Article  CAS  Google Scholar 

  11. H. Nguyen-Thi, G. Reinhart, and B. Billia: CR Mec., 2017, vol. 345, pp. 66–77.

    Article  Google Scholar 

  12. H.P. Utech and M.C. Flemings: J. Appl. Phys., 1966, vol. 37, pp. 2021–24.

    Article  CAS  Google Scholar 

  13. D.T.J. Hurle, E. Jakeman, and C.P. Johnson: J. Fluid Mech., 1974, vol. 64, pp. 565–76.

    Article  Google Scholar 

  14. B. Zhou, W. Lin, Z. Shen, T. Zheng, Y. Zhong, E. Beaugnon, F. Debray, L. Zhang, H. Wang, and Q. Wang: J. Alloys Compd., 2021, vol. 879, p. 160410.

    Article  CAS  Google Scholar 

  15. T. Zheng, Y. Zhong, Z. Lei, W. Ren, Z. Ren, D. Francois, B. Eric, and F. Yves: J. Alloys Compd., 2015, vol. 623, pp. 36–41.

    Article  CAS  Google Scholar 

  16. Y. Zhong, T. Zheng, L. Dong, B. Zhou, W. Ren, J. Wang, Z. Ren, F. Debray, B. Eric, H. Wang, Q. Wang, Y. Dai, and X. Wei: Mater. Des., 2016, vol. 100, pp. 168–74.

    Article  CAS  Google Scholar 

  17. G. Mathiak and G. Frohberg: Cryst. Res. Technol., 1999, vol. 34, pp. 181–88.

    Article  CAS  Google Scholar 

  18. F. Onishi, T. Miyake, Y. Inatomi, and K. Kuribayashi: Microgravity Sci. Technol., 2006, vol. 18, pp. 86–90.

    Article  CAS  Google Scholar 

  19. T. Miyake, Y. Inatomi, and K. Kuribayashi: Jpn. J. Appl. Phys., 2002, vol. 41, pp. L811-13.

    Article  CAS  Google Scholar 

  20. Y. Liu, W. Lin, B. Zhou, T. Zheng, Y. Zhong, and L. Zhang: Rev. Sci. Instrum., 2021, vol. 92, p. 094903.

    Article  CAS  Google Scholar 

  21. J. Wang, Y. Fautrelle, Z.M. Ren, H. Nguyen-Thi, G. Salloum Abou Jaoude, G. Reinhart, N. Mangelinck-Noël, X. Li, and I. Kaldre: Appl. Phys. Lett., 2014, vol. 104, p. 121916.

    Article  Google Scholar 

  22. R. Moreau, O. Laskar, and M. Tanaka: Mater. Sci. Eng. A, 1993, vol. 173, pp. 93–100.

    Article  Google Scholar 

  23. X. Li, Y. Fautrelle, Z. Ren, A. Gagnoud, R. Moreau, Y. Zhang, and C. Esling: Acta Mater., 2009, vol. 57, pp. 1689–1701.

    Article  CAS  Google Scholar 

  24. X. Li, Y. Fautrelle, and Z. Ren: Acta Mater., 2007, vol. 55, pp. 3803–13.

    Article  CAS  Google Scholar 

  25. X. Li, Y. Fautrelle, and Z. Ren: Acta Mater., 2008, vol. 56, pp. 3146–61.

    Article  CAS  Google Scholar 

  26. X. Li, A. Gagnoud, Z. Ren, Y. Fautrelle, and R. Moreau: Acta Mater., 2009, vol. 57, pp. 2180–97.

    Article  CAS  Google Scholar 

  27. Z. Shen, M. Peng, D. Zhu, T. Zheng, Y. Zhong, W. Ren, C. Li, W. Xuan, and Z. Ren: J. Mater. Sci. Technol., 2019, vol. 35, pp. 568–77.

    Article  CAS  Google Scholar 

  28. J. Wang, S. Yue, Y. Fautrelle, P.D. Lee, X. Li, Y. Zhong, and Z. Ren: Sci. Rep., 2016, vol. 6, p. 24585.

    Article  CAS  Google Scholar 

  29. W. Lin, B. Zhou, Y. Liu, X. Guo, T. Zheng, Y. Zhong, L. Zhang, Q. Zhang, and Q. Wang: J. Alloys Compd., 2022, vol. 918, p. 165679.

    Article  CAS  Google Scholar 

  30. B. Zhang, A. Griesche, and A. Meyer: Phys. Rev. Lett., 2010, vol. 104, p. 035902.

    Article  CAS  Google Scholar 

  31. E. Sondermann, N. Jakse, K. Binder, A. Mielke, D. Heuskin, F. Kargl, and A. Meyer: Phys. Rev. B, 2019, vol. 99, p. 024204.

    Article  CAS  Google Scholar 

  32. H. Yasuda, I. Ohnaka, R. Ishit, S. Fujita, and Y. Tamura: ISIJ Int., 2005, vol. 45, pp. 991–96.

    Article  CAS  Google Scholar 

  33. L. Li, R. Zhang, C. Ban, H. Zhang, T. Liu, H. Zhang, X. Wang, C. Esling, and J. Cui: Mater. Charact., 2019, vol. 151, pp. 191–202.

    Article  CAS  Google Scholar 

  34. S.Y. He, T.J. Zhan, C.J. Li, W.D. Xuan, J. Wang, and Z.M. Ren: Mater. Trans., 2019, vol. 60, pp. 1921–27.

    Article  CAS  Google Scholar 

  35. J. Alkemper and P.W. Voorhees: Acta Mater., 2001, vol. 49, pp. 897–902.

    Article  CAS  Google Scholar 

  36. D. Kammer and P. Voorhees: Acta Mater., 2006, vol. 54, pp. 1549–58.

    Article  CAS  Google Scholar 

  37. H. Henein, A.A. Bogno, W. Hearn, and J. Valloton: J. Phase Equilib. Diffus., 2020, vol. 41, pp. 784–92.

    Article  CAS  Google Scholar 

  38. J.A. Dantzig, P.D. Napoli, J. Friedli, and M. Rappaz: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5532–43.

    Article  Google Scholar 

  39. M. Amoorezaei, S. Gurevich, and N. Provatas: Acta Mater., 2010, vol. 58, pp. 6115–24.

    Article  CAS  Google Scholar 

  40. H. Xing, M.Y. Ji, X.L. Dong, Y.M. Wang, L.M. Zhang, and S.M. Li: Mater. Des., 2020, vol. 185, p. 108250.

    Article  CAS  Google Scholar 

  41. G. Azizi, S. Kavousi, and M.A. Zaeem: Acta Mater., 2022, vol. 231, p. 117859.

    Article  CAS  Google Scholar 

  42. Y. Chen, B. Billia, D.Z. Li, H. Nguyen-Thi, N.M. Xiao, and A.-A. Bogno: Acta Mater., 2014, vol. 66, pp. 219–31.

    Article  CAS  Google Scholar 

  43. H. Xing, X. Dong, H. Wu, G. Hao, J. Wang, C. Chen, and K. Jin: Sci. Rep., 2016, vol. 6, p. 26625.

    Article  CAS  Google Scholar 

  44. V.T. Witusiewicz, L. Sturz, A. Viardin, C. Pickmann, and G. Zimmermann: Acta Mater., 2021, vol. 216, p. 117086.

    Article  CAS  Google Scholar 

  45. J.L. Fife and P.W. Voorhees: Acta Mater., 2009, vol. 57, pp. 2418–28.

    Article  CAS  Google Scholar 

  46. H. Yu, K.N. Tandon, and J.R. Cahoon: Metal. Mater. Trans. A, 1997, vol. 28A, pp. 1245–50.

    Article  CAS  Google Scholar 

  47. P. Lehmann, R. Moreau, D. Camel, and R. Bolcato: Acta Mater., 1988, vol. 46, pp. 4067–79.

    Article  Google Scholar 

  48. X. Li, Y. Fautrelle, Z.M. Ren, Y.D. Zhang, and C. Esling: Acta Mater., 2010, vol. 58, pp. 2430–41.

    Article  CAS  Google Scholar 

  49. W. Kurz, and D. J. Fisher: Fundamentals of Solidification, 3rd ed., Trans Tech Publications, Bach, 1992.

Download references

Acknowledgments

The authors gratefully acknowledge the Natural Science Foundation of Shanghai (21ZR1424400), the financial support of the National Natural Science Foundation of China (U1732276, U21A20114), and the Changjiang Scholars Program of China, China Association for Science and Technology Young Talent Support Project. We also acknowledge Y. L. Li for assistance with the X-ray scanning.

Data Availability

Data will be made available on request.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianxiang Zheng, Qiang Li or Yunbo Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., Zhou, B., Zheng, T. et al. X-Ray Tomographic Quantification of Diffusive Growth of Metallic Dendrite in High Magnetic Field. Metall Mater Trans A 54, 4295–4305 (2023). https://doi.org/10.1007/s11661-023-07164-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07164-z

Navigation