Skip to main content
Log in

Quantification of Retained Austenite in Low-Carbon Steels

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Three steels of carbon content between 0.2 and 0.4 wt pct were directly quenched to room temperature after austenitization at 1223 K (950 °C). Attempts were made to quantify the amount of retained austenite in the full quenched condition using X-ray diffraction analysis. The direct estimation of the amount of austenite remaining untransformed after full quenching using X-ray diffraction analysis is difficult since high-intensity peaks of austenite and martensite overlap and merge together and austenite transforms to martensite during sample preparation owing to its low stability. The results indicate that the amount of retained austenite in fully quenched sample of low-carbon steel is underestimated using routine XRD. However, when the full quenched samples were subjected to a tempering treatment at 673 K (400 °C) for 300 seconds, the (111) peak of austenite and (110) peak of martensite were observed distinctly and the amount of retained austenite was estimated to be close to the value calculated using Koistinen and Marburger equation and measured by EBSD analysis of this sample. This was attributed to the carbon enrichment of austenite due to carbon depletion from martensite which results in peak separation. In addition, stability of austenite increases and it does not undergo deformation-induced martensite transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Kuziak, R. Kawalla, and S. Waengler: Arch. Civ. Mech. Eng., 2008, vol. 8, pp. 103–17.

    Article  Google Scholar 

  2. ULSAB-AVC: Ultra Light Steel Auto Body—Advance Vehicle Concept-Overview Report, 2002.

  3. S. Kumar and S.B. Singh: Materialia, 2021, vol. 18, 101135.

    Article  CAS  Google Scholar 

  4. D.T. Pierce, D.R. Coughlin, K.D. Clarke, E. De Moor, J. Poplawsky, D.L. Williamson, B. Mazumder, J.G. Speer, A. Hood, and A.J. Clarke: Acta Mater., 2018, vol. 151, pp. 454–69.

    Article  CAS  Google Scholar 

  5. A. Navarro-López, J. Hidalgo, J. Sietsma, and M.J. Santofimia: Mater. Sci. Eng. A, 2018, vol. 735, pp. 343–53.

    Article  Google Scholar 

  6. A. Navarro-López, J. Sietsma, and M.J. Santofimia: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1028–39.

    Article  Google Scholar 

  7. F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, and M.J. Santofimia: Acta Mater., 2016, vol. 104, pp. 72–83.

    Article  CAS  Google Scholar 

  8. F. HajyAkbary, J. Sietsma, G. Miyamoto, N. Kamikawa, R.H. Petrov, T. Furuhara, and M.J. Santofimia: Mater. Sci. Eng. A, 2016, vol. 677, pp. 505–14.

    Article  CAS  Google Scholar 

  9. S. Samanta, S. Das, D. Chakrabarti, I. Samajdar, S.B. Singh, and A. Haldar: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5653–64.

    Article  CAS  Google Scholar 

  10. S.M.C. Van Bohemen and D.N. Hanlon: Int. J. Mater. Res., 2012, vol. 103, pp. 987–91.

    Article  Google Scholar 

  11. B.D. Cullity: Elements of X-Ray Diffraction, 2nd ed. Addison-Wesley Publishing Co Inc, Boston, 1978.

    Google Scholar 

  12. G. Krauss: Steels: Processing, Structure, and Performance, 1st ed. ASM International, Materials Park, 2005, pp. 55–86.

    Google Scholar 

  13. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–22.

    Article  CAS  Google Scholar 

  14. D.K. Matlock, V.E. Brautigam, and J.G. Speer: Mater. Sci. Forum, 2003, vol. 426–432, pp. 1089–94.

    Article  Google Scholar 

  15. J.G. Speer, F.C. Rizzo Assunção, D.K. Matlock, and D.V. Edmonds: Mater. Res., 2005, vol. 8, pp. 417–23.

    Article  CAS  Google Scholar 

  16. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer: Mater. Sci. Eng. A, 2006, vol. 438–440, pp. 25–34.

    Article  Google Scholar 

  17. R.A. Young: Oxford Univ. Press, London, 2002, pp. 1–111.

  18. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59–60.

    Article  Google Scholar 

  19. M. Mukherjee, S.B. Singh, and O.N. Mohanty: Mater. Sci. Eng. A, 2008, vol. 486, pp. 32–37.

    Article  Google Scholar 

  20. R. Ranjan, H. Beladi, S.B. Singh, and P.D. Hodgson: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 3232–47.

    Article  Google Scholar 

  21. W. Li, H. Gao, Z. Li, H. Nakashima, S. Hata, and W. Tian: Int. J. Miner. Metall. Mater., 2016, vol. 23, pp. 303–13.

    Article  CAS  Google Scholar 

  22. H.Y. Li, X.W. Lu, W.J. Li, and X.J. Jin: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1284–1300.

    Article  CAS  Google Scholar 

  23. E.J. Seo, L. Cho, and B.C. De Cooman: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4022–37.

    Article  Google Scholar 

  24. B. An, C. Zhang, G. Gao, X. Gui, Z. Tan, R.D.K. Misra, and Z. Yang: Mater. Sci. Eng. A, 2019, vol. 757, pp. 117–23.

    Article  CAS  Google Scholar 

  25. D.J. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 467–74.

    Google Scholar 

  26. H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, and R.W. Reed: Mater. Sci. Technol., 1991, vol. 7, pp. 686–98.

    Article  CAS  Google Scholar 

  27. S. Kumar: Mater. Sci. Technol., 2022, vol. 38, pp. 663–75.

    Article  CAS  Google Scholar 

  28. D.T. Pierce, D.R. Coughlin, D.L. Williamson, K.D. Clarke, A.J. Clarke, J.G. Speer, and E. De Moor: Acta Mater., 2015, vol. 90, pp. 417–30.

    Article  CAS  Google Scholar 

  29. Y. Toji, H. Matsuda, M. Herbig, P.P. Choi, and D. Raabe: Acta Mater., 2014, vol. 65, pp. 215–28.

    Article  CAS  Google Scholar 

  30. S. Kumar and S.B. Singh: Metall. Mater. Trans. A, 2023, vol. 54A, pp. 3134–56.

    Article  Google Scholar 

  31. D.K. Matlock, and J.G. Speer: in Microstructure and texture in steels and other materials, A. Halder, S. Suwas, and D. Bhattacharjee, eds., Springer, London, 2009, pp. 185–205.

  32. A. Grajcar, R. Kuziak, and W. Zalecki: Arch. Civ. Mech. Eng., 2012, vol. 12, pp. 334–41.

    Article  Google Scholar 

  33. I. Harding, I. Mouton, B. Gault, D. Raabe, and K.S. Kumar: Scr. Mater., 2019, vol. 172, pp. 38–42.

    Article  CAS  Google Scholar 

  34. S. Matas and R.F. Hehemann: Nature, 1960, vol. 187, pp. 685–86.

    Article  CAS  Google Scholar 

  35. E.J. Seo, L. Cho, and B.C. De Cooman: Acta Mater., 2016, vol. 107, pp. 354–65.

    Article  CAS  Google Scholar 

  36. G.A. Thomas and J.G. Speer: Mater. Sci. Technol., 2014, vol. 30, pp. 998–1007.

    Article  CAS  Google Scholar 

  37. L. Cheng, C.M. Brakman, B.M. Korevaar, and E.J. Mittemeijer: Metall. Trans. A, 1988, vol. 19A, pp. 2415–26.

    Article  CAS  Google Scholar 

  38. M.J. Santofimia, T. Nguyen-Minh, L. Zhao, R. Petrov, I. Sabirov, and J. Sietsma: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6429–39.

    Article  Google Scholar 

  39. E.J. Seo, L. Cho, and B.C. De Cooman: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3797–3802.

    Article  Google Scholar 

  40. G.R. Speich and W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 1043–54.

    Article  CAS  Google Scholar 

  41. M. Jung, S. Lee, and Y. Lee: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 551–59.

    Article  CAS  Google Scholar 

  42. A.M. Sherman, G.T. Eldis, and M. Cohen: Metall. Trans. A, 1983, vol. 14A, pp. 995–1005.

    Article  Google Scholar 

  43. H.K.D.H. Bhadeshia, and R. Honeycombe: in Steels: Microstructure and Properties, 4 th edn., 2017, pp. 237–70.

  44. T.A. Kop, J. Sietsma, and S. Van Der Zwaag: J. Mater. Sci., 2001, vol. 36, pp. 519–26.

    Article  CAS  Google Scholar 

  45. J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 219–37.

    Article  CAS  Google Scholar 

  46. M. Hillert and J. Årgen: Scr. Mater., 2004, vol. 50, pp. 697–99.

    Article  CAS  Google Scholar 

  47. J.G. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Scr. Mater., 2005, vol. 52, pp. 83–85.

    Article  CAS  Google Scholar 

  48. M. Hillert and J. Årgen: Scr. Mater., 2005, vol. 52, pp. 87–88.

    Article  CAS  Google Scholar 

  49. J.G. Speer, R.E. Hackenberg, B.C. De Cooman, and D.K. Matlock: Philos. Mag. Lett., 2007, vol. 87, pp. 379–82.

    Article  CAS  Google Scholar 

  50. M.J. Santofimia, L. Zhao, and J. Sietsma: Scr. Mater., 2008, vol. 59, pp. 159–62.

    Article  CAS  Google Scholar 

  51. S.J. Kim, H.S. Kim, and B.C. De Cooman: Materials Science and Technology (MS&T), Detroit, MI, 2007, pp. 73–83.

  52. S. Kumar, S. Samanta, and S.B. Singh: Mater. Charact., 2022, vol. 191, 112049.

    Article  CAS  Google Scholar 

  53. J. William, and D. Callister: in Fundamentals of Materials Science and Engineering, Fifth edit., 2001, pp. 127–43.

Download references

Acknowledgments

The authors duly acknowledge the Head of Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, India, for providing the laboratory facility. The author (S. Kumar) gratefully acknowledges the Indian Institute of Technology Kharagpur for the financial support. The authors thank Dr. Ravi Ranjan, R&D Division, Tata Steel Ltd. Jamshedpur, and K. Poorna Chander and B. Mohan Rao, IIT Kharagpur, for their help in dilatometry experiments. The authors would also like to thank the reviewers for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Singh, S.B. Quantification of Retained Austenite in Low-Carbon Steels. Metall Mater Trans A 54, 4283–4294 (2023). https://doi.org/10.1007/s11661-023-07162-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07162-1

Navigation