Skip to main content
Log in

Explaining the Abnormal Dilatation Behavior During the Austenite Formation in a Microstructure of a Low-Carbon Low-Alloy Steel Containing Retained Austenite

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

During continuous heating of a low-carbon low-alloy steel in a dilatometer, an abnormal macroscopic expansion has been observed in the length change of the sample during the onset of austenite formation. Such abnormal expansion behavior is also detected in the literature data with similar initial microstructures and heating rates on various steels. Here, this work investigates the causes and consequences of this abnormal expansion using in situ high-energy X-ray diffraction analysis. According to the volume investigated by diffraction, a significant amount of austenite forms before the onset of the macroscopic contraction of the sample associated with the bainite-to-austenite transformation. The delay in the macroscopic contraction is due to the retained austenite lattice expansion, arising from the concentration inhomogeneities in this phase produced by carbides dissolution during austenitization. The retained austenite lattice expansion manifests as a macroscopic expansion in the length change of the sample. Such abnormal expansion results in a significant overestimation of the Ac1 temperature, and a systematic shift in the austenite formation kinetics determined by dilatometry in comparison with X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Klein, M. Lukas, P. Haslberger, B. Friessnegger, M. Galler, and G. Ressel: JOM, 2019, vol. 71, pp. 1357–365.

    Article  CAS  Google Scholar 

  2. M. Chang and H. Yu: Int. J. Miner. Metall. Mater., 2013, vol. 20, pp. 427–32.

    Article  CAS  Google Scholar 

  3. F.G. Caballero, C. García-Mateo, and C. García de Andrades: Mater. Trans., 2005, vol. 46, pp. 581–86.

    Article  CAS  Google Scholar 

  4. J.R. Yang and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 1991, vol. 131, pp. 99–113.

    Article  Google Scholar 

  5. M.A. Valdes-Tabernero, C. Celada-Casero, I. Sabirov, A. Kumar, and R.H. Petrov: Mater. Charact., 2019, vol. 155, 109822.

    Article  CAS  Google Scholar 

  6. I. Hordycha, K. Bilda, V. Boiarkinb, D. Rodmana, and N. Florian: Procedia Manuf., 2018, vol. 18, pp. 1062–70.

    Article  Google Scholar 

  7. T. De Cock, C. Capdevila, F.G. Caballero, and C.G. de Andrés: Scr. Mater., 2006, vol. 54, pp. 949–54.

    Article  Google Scholar 

  8. F. Christien, M.T.F. Telling, and K.S. Knight: Mater. Charact., 2013, vol. 82, pp. 50–57.

    Article  CAS  Google Scholar 

  9. I.R.S. Filho, D.R. Almeida Jr., C. Gauss, M.J.R. Sandim, P.A. Suzuki, and H.R.Z. Sandim: Mater. Sci. Eng. A, 2019, vol. 755, pp. 267–77.

    Article  Google Scholar 

  10. B. Denand, V.A. Esin, M. Dehmas, G. Geandier, S. Denis, T. Sourmail, and E. Aeby-Gautier: Materialia, 2020, vol. 10, 100664.

    Article  CAS  Google Scholar 

  11. V.A. Esin, B. Denand, Q. Le Bihan, M. Dehmas, J. Teixeira, G. Geandier, S. Denis, T. Sourmail, and E. Aeby-Gautier: Acta Mater., 2014, vol. 80, pp. 118–31.

    Article  CAS  Google Scholar 

  12. W.L. Bevilaqua, J. Epp, H. Meyer, J. Dong, H. Roelofs, A. da Silva Rocha, and A. Reguly: Metals (Basel), 2021, vol. 11, p. 467.

    Article  CAS  Google Scholar 

  13. W.L. Bevilaqua, J. Epp, H. Meyer, A. Da Silva Rocha, and H. Roelofs: Metall. Mater. Trans. A, 2020, vol. 51, pp. 3627–637.

    Article  Google Scholar 

  14. G. Ashiotis, A. Deschildre, Z. Nawaz, J.P. Wright, D. Karkoulis, F.E. Picca, and J. Kieffer: J. Appl. Crystallogr., 2015, vol. 48, pp. 510–19.

    Article  CAS  Google Scholar 

  15. S.Y.P. Allain, S. Gaudez, G. Geandier, F. Danoix, M. Soler, and M. Goune: Scr. Mater., 2020, vol. 181, pp. 108–14.

    Article  CAS  Google Scholar 

  16. S. Reisinger, E. Kozeschnik, G. Ressel, J. Keckes, A. Stark, S. Marsoner, and R. Ebner: Mater. Des., 2018, vol. 155, pp. 475–84.

    Article  CAS  Google Scholar 

  17. A.S. Nishikawa, G. Miyamoto, T. Furuhara, A.P. Tschiptschin, and H. Goldenstein: Acta Mater., 2019, vol. 179, pp. 1–16.

    Article  CAS  Google Scholar 

  18. E.A. Ariza, A. Nishikawa, H. Goldenstein, and A.P. Tschiptschin: Mater. Sci. Eng. A, 2016, vol. 671, pp. 54–69.

    Article  CAS  Google Scholar 

  19. D.J. Dyson, B. Holmes (1970)J. Iron Steel Inst., vol. 208, pp. 469–74.

    CAS  Google Scholar 

  20. E.J. Pickering, J. Collins, A. Stark, L.D. Connor, A.A. Kiely, and H.J. Stone: Mater. Charact., 2020, vol. 165, 110355.

    Article  CAS  Google Scholar 

  21. I. Vieira, J. Klemm-Toole, E. Buchner, D.L. Williamson, K.O. Findley, and E. De Moor: Sci. Rep., 2017, vol. 7, p. 17337.

    Article  CAS  Google Scholar 

  22. M. Zorgani, C. Garcia-Mateo, and M. Jahazi: Mater. Des., 2021, vol. 210, 110082.

    Article  CAS  Google Scholar 

  23. I. Lonardelli, M. Bortolotti, W. van Beek, L. Girardini, M. Zadra, and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 2012, vol. 555, pp. 139–47.

    Article  CAS  Google Scholar 

  24. L. Guo, H. Roelofs, M.I. Lembke, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2017, vol. 33, pp. 1013–18.

    Article  CAS  Google Scholar 

  25. T. Kop: Delft University of Technology, 2000.

  26. R. Wei, M. Enomoto, R. Hadian, H.S. Zurob, and G.R. Purdy: Acta Mater., 2013, vol. 61, pp. 697–707.

    Article  CAS  Google Scholar 

  27. J.J. Mueller, X. Hu, X. Sun, Y. Ren, K. Choi, E. Barker, J.G. Speer, D.K. Matlock, and E. De Moor: Mater. Des., 2021, vol. 203, 109598.

    Article  CAS  Google Scholar 

  28. H. Bhadeshia, L. Guo, H. Roelfs, and M. Lembke: 2018. https://www.repository.cam.ac.uk/items/24886c15-de15-4df8-bf8d-7b28c351119b.

  29. C.N. Hulme-Smith, I. Lonardelli, M.J. Peet, A.C. Dippel, and H.K.D.H. Bhadeshia: Scr. Mater., 2013, vol. 69, pp. 191–94.

    Article  CAS  Google Scholar 

  30. T. Sourmail and V. Smanio: Mater. Sci. Technol., 2013, vol. 29, pp. 883–88.

    Article  CAS  Google Scholar 

  31. C.G. De Andrés, J.A. Jiménez, and L.F. Álvarez: Metall. Mater. Trans. A, 1996, vol. 27, pp. 1799–805.

    Article  Google Scholar 

  32. F.G. Caballero, L.F. Álvarez, C. Capdevila, and C. G. de Andrés: Scr. Mater., 2003, vol. 49, pp. 315–20.

    Article  CAS  Google Scholar 

  33. Y.I. Ustinovshchikov: Met. Sci., 1984, vol. 18, pp. 337–44.

    Article  CAS  Google Scholar 

  34. G. Krauss: Steels: Processing, Structure, and Performance, ASM International, 2005.

  35. A. Eggbauer, M. Lukas, G. Ressel, P. Prevedel, F. Mendez-Martin, J. Keckes, A. Stark, and R. Ebner: J. Mater. Sci., 2019, vol. 54, pp. 9197–212.

    Article  CAS  Google Scholar 

  36. M. Yonemura, H. Nishibata, T. Nishiura, N. Ooura, Y. Yoshimoto, K. Fujiwara, K. Kawano, T. Terai, Y. Inubushi, I. Inoue, K. Tono, and M. Yabashi: Sci. Rep., 2019, vol. 9, p. 11241.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge DESY for the provision of beamtime and Norbert Schell and Andreas Stark from Helmholtz-Center-Geesthacht at beamline P07 (PETRA III-DESY) for support during the synchrotron experiments. W.L.B. thanks to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—Grant Number 1844/2017/process 88881.142485/2017-01) for the scholarship.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Lemos Bevilaqua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 585 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bevilaqua, W.L., Epp, J., da Silva Rocha, A. et al. Explaining the Abnormal Dilatation Behavior During the Austenite Formation in a Microstructure of a Low-Carbon Low-Alloy Steel Containing Retained Austenite. Metall Mater Trans A 54, 3349–3357 (2023). https://doi.org/10.1007/s11661-023-07105-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07105-w

Navigation