Skip to main content

Advertisement

Log in

GTAW Dissimilar Weldment of sDSS 2507 and Nickel Alloy for Marine Applications: Microstructure–Mechanical Integrity

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Gas tungsten arc welding (GTAW) is a widely used process in marine and offshore applications to produce high-quality dissimilar welded joints (DWJs). However, the structural integrity of the welded joint depends on the heat input and filler metal application. This study investigated the microstructure–mechanical integrity and residual stresses of a multipass GTAW joint between super duplex stainless steel (sDSS 2507) and Inconel 625 (IN-625) utilizing ERNiCrMo-3 filler and two heat inputs (0.73 and 1.4 kJ/mm). This is a typical dissimilar joint found in oil and gas pipelines, and risers used to extract hydrocarbons. To understand the effect of the microstructure evolution on the mechanical behavior, the microstructure of the lower heat input (LHI) and higher heat input (HHI) weldments was compared. The optical image and secondary electron spectroscopy revealed an austenitic microstructure with an equiaxed, columnar, and cellular morphology in the LHI and HHI weld zones, with a Ni weight percentage of 52.40 pct. An unmixed zone (UZ) was found at the LHI and HHI weld zones and sDSS 2507 base metal interface but not at the IN-625 interface. NbC and Laves phases were found in the interdendritic region by energy-dispersive X-ray spectroscopy. Mechanical testing, including microhardness behavior, tensile properties, and impact toughness, was conducted in various weld regions following standard procedures at room temperature. The study also used deep hole drilling (DHD) methods to assess residual stresses of both LHI and HHI weld zone and determine whether heat input influenced these stresses. The LHI and HHI specimens’ average ultimate tensile strength and percent elongation values were determined to be 800 ± 7 MPa and 27 ± 2 pct and 857 ± 5 MPa and 29 ± 3 pct, respectively. The microhardness maps demonstrated variations in the weld zones for both heat input weldments. The weld zone’s hardness varied from 260 to 360 Hv0.5, with an average of 280 ± 6 Hv0.5 for LHI and 300 ± 4 Hv0.5 for HHI weldment. Impact toughness for the LHI weldment was 155 ± 3 and 160 ± 2 J for the cap and root regions, respectively, while it was 185 ± 7 and 195 ± 3 J for the HHI weldment. The DHD approach was utilized to analyze the distribution of residual stresses in the weld zone of both heat input weldments. Both the LHI and HHI joints showed a significant variation in residual stresses, with the HHI weldment exhibiting higher residual stress magnitudes for both tangential (21 pct) and longitudinal (23 pct) directions. The sDSS 2507/IN-625 DWJ was optimally fabricated without significant defects and with adequate mechanical performance to be considered for use in oil and gas pipelines and risers used in hydrocarbon extraction in accordance with ASTM specifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. R. Chhibber, N. Arora, S.R. Gupta, and B.K. Dutta: Proc. Inst. Mech. Eng. C, 2006, vol. 220, pp. 1121–133.

    Article  CAS  Google Scholar 

  2. J.C. Lippold and D.J. Kotecki: Welding Metallurgy and Weldability of Stainless Steels, Wiley, Hoboken, NJ, 2005, p. 376.

  3. G. Dak and C. Pandey: J. Manuf. Process., 2022, vol. 80, pp. 829–51.

    Article  Google Scholar 

  4. J.C. Lippold: Welding Metallurgy and Weldability, vol. 9781118230, Wiley, Hoboken, NJ, 2014.

    Google Scholar 

  5. A. Pramanik, G. Littlefair, and A.K. Basak: Mater. Manuf. Process., 2015, vol. 30, pp. 1053–068.

    Article  CAS  Google Scholar 

  6. J.N. Dupont, J.C. Lippold, and S.D. Kiser: Welding Metallurgy and Weldability of Nickel-Base Alloys, Wiley, Hoboken, 2011.

    Google Scholar 

  7. A. Chabbi, M. Bouabdallah, S. Sao-Joao, A. Boudiaf, and G. Kermouche: Metall. Res. Technol., 2020, vol. 117, p. 407.

    Article  CAS  Google Scholar 

  8. R. Sridhar, K.D. Ramkumar, and N. Arivazhagan: Acta Metall. Sin. (Engl. Lett.), 2014, vol. 27, pp. 1018–030.

    Article  CAS  Google Scholar 

  9. K. Devendranath Ramkumar, P.S.G. Kumar, V. Sai Radhakrishna, K. Kothari, R. Sridhar, N. Arivazhagan, and P. Kuppan: J. Mater. Res., 2015, vol. 30, pp. 3288–98.

    Article  CAS  Google Scholar 

  10. V. Shankar, K. Bhanu Sankara Rao, and S.L. Mannan: J. Nucl. Mater., 2001, vol. 288, pp. 222–32.

    Article  CAS  Google Scholar 

  11. H. Boehm, K. Ehrlich, and K.H. Kramer: Metall, 1970, vol. 24, pp. 139–44.

    CAS  Google Scholar 

  12. A. Gunen and E. Kanca: Revista Materia, 2017, https://doi.org/10.1590/S1517-707620170002.0161.

    Article  Google Scholar 

  13. P.K. Korrapati, V.K. Avasarala, M. Bhushan, K. Devendranath Ramkumar, N.N. Arivazhagan, and S. Narayanan: Procedia Engineering, vol. 75, Elsevier Ltd, Amsterdam, 2014, pp. 9–13.

    Google Scholar 

  14. R. Bews: Weld. J., 2002, vol. 81, pp. 36–9.

    Google Scholar 

  15. A.K. Maurya, C. Pandey, and R. Chhibber: Mater. Manuf. Process., 2023, vol. 38, pp. 379–400.

    Article  CAS  Google Scholar 

  16. A.K. Maurya, R. Chhibber, and C. Pandey: J. Mater. Eng. Perform., 2022, vol. 31, pp. 1–34.

    Google Scholar 

  17. A. Kumar and C. Pandey: Metall. Mater. Trans. A., 2022, vol. 53A, pp. 3245–273.

    Article  Google Scholar 

  18. K.D. Ramkumar, S. Oza, S. Periwal, N. Arivazhagan, R. Sridhar, and S. Narayanan: Ciência & Tecnologia dos Materiais, 2015, vol. 27, pp. 41–52.

    Article  Google Scholar 

  19. V. Bhanu, C. Pandey, and A. Gupta: CIRP J. Manuf. Sci. Technol., 2022, vol. 38, pp. 560–80.

    Article  Google Scholar 

  20. G. Dak and C. Pandey: Int. J. Press. Vessels Pip., 2021, vol. 194, p. 104536.

    Article  CAS  Google Scholar 

  21. Z. Zhou and J. Löthman: Weld. World, 2017, vol. 61, pp. 21–33.

    Article  CAS  Google Scholar 

  22. A. Eghlimi, M. Shamanian, M. Eskandarian, A. Zabolian, and J.A. Szpunar: Mater. Charact., 2015, vol. 106, pp. 27–35.

    Article  CAS  Google Scholar 

  23. W.N. Khan and R. Chhibber: Proc. Inst. Mech. Eng. L, 2021, vol. 235, pp. 1827–840.

    CAS  Google Scholar 

  24. N. Nissley, T.D. Anderson, F.F. Noecker, C. Roepke, M. Gallagher, and M. Hukle: Proc. Int. Conf. Offshore Mech. Arct. Eng. - OMAE, American Society of Mechanical Engineers (ASME), New York, 2014, vol. 5.

  25. J. Kangazian and M. Shamanian: J. Manuf. Process., 2017, vol. 26, pp. 407–18.

    Article  Google Scholar 

  26. B. Varbai, P. Bolyhos, D.M. Kemény, and K. Májlinger: Period. Polytech. Mech. Eng., 2022, vol. 66, pp. 344–49.

    Article  Google Scholar 

  27. C. Payares-Asprino: Adv. Mater. Sci., 2021, vol. 21, pp. 75–90.

    Article  CAS  Google Scholar 

  28. A.K. Maurya, C. Pandey, and R. Chhibber: Arch. Civ. Mech. Eng., 2022, vol. 22, p. 90.

    Article  Google Scholar 

  29. E.A. Zadeh, M. Masaeli, and R. Dehmolaye: J. Basic Appl. Adv. Sci., 2016, vol. 4, pp. 1–7.

    Google Scholar 

  30. A.K. Maurya, R. Chhibber, and C. Pandey: J. Mater. Sci., 2016, vol. 58, pp. 1–38. https://doi.org/10.1007/s10853-023-08562-9.

    Article  CAS  Google Scholar 

  31. H. Vemanaboina, B. Sridhar Babu, E. Gundabattini, P. Ferro, and K. Kumar: Adv. Mater. Sci. Eng., 2021, vol. 2021, pp. 1–9.

    Google Scholar 

  32. A.Z. Ramay, T. Shehbaz, F.N. Khan, M. Junaid, and A. Iltaf: Proc. Inst. Mech. Eng. C, 2022, vol. 236, pp. 6077–94.

    Article  CAS  Google Scholar 

  33. M. Sadeghian, M. Shamanian, and A. Shafyei: Mater. Des., 2014, vol. 60, pp. 678–84.

    Article  CAS  Google Scholar 

  34. H. Tasalloti, P. Kah, and J. Martikainen: Mater. Charact., 2017, vol. 123, pp. 29–41.

    Article  CAS  Google Scholar 

  35. M. Vahman, M. Shamanian, M.A. Golozar, A. Jalali, M.A. Sarmadi, and J. Kangazian: Steel Res. Int., 2019, https://doi.org/10.1002/SRIN.201900347.

    Article  Google Scholar 

  36. V.A. Hosseini, K. Hurtig, and L. Karlsson: Mater. Corros., 2017, vol. 68, pp. 405–15.

    Article  CAS  Google Scholar 

  37. N. Ouali, K. Khenfer, B. Belkessa, J. Fajoui, B. Cheniti, B. Idir, and S. Branchu: J. Mater. Eng. Perform., 2019, vol. 28, pp. 4252–264.

    Article  CAS  Google Scholar 

  38. E. Ranjbarnodeh, S. Serajzadeh, A. Hosein Kokabi, S. Hanke, and A. Fischer: Int. J. Adv. Manuf. Technol., 2011, vol. 55, pp. 649–56.

    Article  Google Scholar 

  39. R. Unnikrishnan, K.S.N.S. Idury, T.P. Ismail, A. Bhadauria, S.K. Shekhawat, R.K. Khatirkar, and S.G. Sapate: Mater. Charact., 2014, vol. 93, pp. 10–23.

    Article  CAS  Google Scholar 

  40. H. Vemanaboina, G. Edison, and S. Akella: Mater. Res. Express, 2019, vol. 6, p. 096519.

    Article  Google Scholar 

  41. M. Vahman, M. Shamanian, M.A. Golozar, A. Jalali, M.A. Sarmadi, and J. Kangazian: Steel Res. Int., 2020, vol. 91, p. 1900347.

    Article  CAS  Google Scholar 

  42. C. Köse and C. Topal: J. Manuf. Process., 2022, vol. 73, pp. 861–94.

    Article  Google Scholar 

  43. W.N. Khan and R. Chhibber: Mater. Sci. Eng. A, 2021, vol. 803, p. 140476.

    Article  CAS  Google Scholar 

  44. American Welding Society (AWS): Code-Steel and Structural Welding: “AWS D1. 1/D1. 1M”, American Welding Society, Miami, Florida, 2010.

  45. J.N. DuPont and A.R. Marder: Weld. J.-Incl. Weld. Res. Suppl., 1995, vol. 74, p. 406s.

    Google Scholar 

  46. F.A. Cotrim-Ferreira, C.L. Quaglio, R.P.V. Peralta, P.E.G. Carvalho, and D.F. Siqueira: Braz. Oral Res., 2010, vol. 24, pp. 438–2.

    Article  Google Scholar 

  47. ASTM E 407-93: Standard Practice for Microetching Metals and Alloys, ASTM International, USA, 1997.

  48. ASTM E92–16: Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, ASTM International, West Conshohocken, 2016.

  49. ASTM E8: Annual Book of ASTM Standards 4, ASTM International, West Conshohocken, 2010, pp. 1–27.

    Google Scholar 

  50. ASTM American Society for Testing and Materials and ASTM E 23–12c: Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, West Conshohocken, 2013. https://www.astm.org/e0837-20.html

  51. E. 837-01 ASTM: Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method, 1986. https://www.sciencedirect.com/book/9780080570693/theory-of-elasticity

  52. S.P. Timoshenko and J.N. Goodier: Theory of Elasticity. Chameleon Press, Birmingham.

  53. N.W. Bonner and D.J. Smith: Measurement of Residual Stresses in a Thick Section Steel Weld, 1994, pp. 259–74.

  54. P.K. Taraphdar, R. Kumar, C. Pandey, and M.M. Mahapatra: Met. Mater. Int., 2021, vol. 27, pp. 3478–492.

    Article  CAS  Google Scholar 

  55. P. Kumar Taraphdar, M.M. Mahapatra, A. Kumar Pradhan, P.K. Singh, K. Sharma, and S. Kumar: Met. Mater. Int., 2021, https://doi.org/10.1177/0954405421990124.

    Article  Google Scholar 

  56. J.N. Dupont: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3612–620.

    Article  CAS  Google Scholar 

  57. S. Kumar, V.K. Yadav, S.K. Sharma, C. Pandey, A. Goyal, and P. Kumar: Int. J. Press. Vessels Pip., 2021, vol. 193, p. 104443.

    Article  CAS  Google Scholar 

  58. I. Bunaziv, V. Olden, and O.M. Akselsen: Appl. Sci., 2019, vol. 9, art. no. 3118.

    Article  CAS  Google Scholar 

  59. S. Kou: Weld. Metall., 2003, vol. 2, pp. 199–202.

    Google Scholar 

  60. X. Li and W. Tan: Comput. Mater. Sci., 2018, vol. 153, pp. 159–69.

    Article  CAS  Google Scholar 

  61. F. Liu, F. Lyu, F. Liu, X. Lin, and C. Huang: J. Market. Res., 2020, vol. 9, pp. 9753–765.

    CAS  Google Scholar 

  62. Y. Wang, H. Cui, M. Fan, Y. Chen, and F. Lu: Mater. Charact., 2019, vol. 151, pp. 227–36.

    Article  CAS  Google Scholar 

  63. A.K. Maurya, C. Pandey, and R. Chhibber: Int. J. Press. Vessels Pip., 2021, vol. 192, 104439.

    Article  CAS  Google Scholar 

  64. EN ISO15614-1: ISO Standards, 2017, vol. 2, International Organization for Standardization, London, pp. 1–38.

  65. A. Skouras, A. Paradowska, M.J. Peel, P.E.J. Flewitt, and M.J. Pavier: Int. J. Press. Vessels Pip., 2013, vol. 101, pp. 143–53.

    Article  CAS  Google Scholar 

Download references

Funding

No funding is received for the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anup Kumar Maurya or Chandan Pandey.

Ethics declarations

Conflict of interest

Author(s) have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, A.K., Chhibber, R. & Pandey, C. GTAW Dissimilar Weldment of sDSS 2507 and Nickel Alloy for Marine Applications: Microstructure–Mechanical Integrity. Metall Mater Trans A 54, 3311–3340 (2023). https://doi.org/10.1007/s11661-023-07101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07101-0

Navigation