Skip to main content
Log in

Formation Behavior of AlN Precipitates in Super-Duplex Stainless Steel and the Impact on Mechanical Properties

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

AlN precipitates can be easily formed in Al-killed super-duplex stainless steel (SDSS), and may significantly deteriorate the mechanical properties of the steel. Therefore, three 2507 SDSS ingots containing 290 to 660 ppm Al were prepared, focusing on the characteristics of AlN precipitates, the solubility product of AlN and the mechanical properties. AlN precipitates were observed mainly in ferrite phase, and uniformly distributed over the phase. With increasing temperature from 1223 K to 1473 K, the area fraction of AlN precipitates approximately linearly decreases. However, further increasing temperature to 1573 K, the area fraction exhibits an obvious increasing tendency. Such a phenomenon is reported for the first time, and may be related to rapid variation of austenite and ferrite fractions over the temperature range. Based on a newly developed method, the expression of AlN solubility product as a function of temperature was obtained, and high reliability was demonstrated. The tensile/yield strength of 2507 SDSS are insensitive to Al content. However, the presence of 410 ppm and 660 ppm Al deteriorates the elongation at break and the impact energy, due to the formation of excessive AlN precipitates. This work provides useful guidance for the control of Al levels in 2507 SDSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.C. Tanzi, S. Farè, and G. Candiani: Foundations of Biomaterials Engineering, Academic Press, Cambridge, 2019.

    Google Scholar 

  2. R. Gunn: Duplex Stainless Steels: Microstructure, Properties and Applications, Woodhead Publishing, Sawston, 1997.

    Book  Google Scholar 

  3. L.F. Garfias-Mesias, J.M. Sykes, and C.D.S. Tuck: Corros. Sci., 1996, vol. 38, pp. 1319–30.

    Article  CAS  Google Scholar 

  4. N. Lopez, M. Cid, and M. Puiggali: Corros. Sci., 1999, vol. 41, pp. 1615–31.

    Article  CAS  Google Scholar 

  5. A. Iza-Mendia, A. Pinol-Juez, J.J. Urcola, and I. Gutierrez: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2975–86.

    Article  CAS  Google Scholar 

  6. Y. Zhao, Y. Wang, S. Tang, W. Zhang, and Z. Liu: J. Mater. Process. Technol., 2019, vol. 266, pp. 246–54.

    Article  CAS  Google Scholar 

  7. Y.-N. Wang, J. Yang, R.-Z. Wang, X.-L. Xin, and L.-Y. Xu: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1697–12.

    Article  Google Scholar 

  8. K. Yamamoto, H. Yamamura, and Y. Suwa: ISIJ Int., 2011, vol. 51, pp. 1987–94.

    Article  CAS  Google Scholar 

  9. T.B. Cox and J.R. Low: Metall. Mater. Trans. B, 1974, vol. 5B, pp. 1457–70.

    Article  Google Scholar 

  10. X. Wang, C. Wang, J. Kang, G. Wang, D. Misra, and G. Yuan: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 2927–38.

    Article  Google Scholar 

  11. M.A. Baker and J.E. Castle: Corros. Sci., 1993, vol. 34, pp. 667–82.

    Article  CAS  Google Scholar 

  12. T.V. Shibaeva, V.K. Laurinavichyute, G.A. Tsirlina, A.M. Arsenkin, and K.V. Grigorovich: Corros. Sci., 2014, vol. 80, pp. 299–308.

    Article  CAS  Google Scholar 

  13. A. Karasev and H. Suito: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 259–70.

    Article  CAS  Google Scholar 

  14. J.-O. Nilsson: Mater. Sci. Technol., 1992, vol. 8, pp. 685–700.

    Article  CAS  Google Scholar 

  15. F.G. Wilson and T. Gladman: Int. Mater. Rev., 1988, vol. 33, pp. 221–86.

    Article  CAS  Google Scholar 

  16. P.-C. Lu, H.-B. Li, H. Feng, Z.-H. Jiang, H.-C. Zhu, Z.-Z. Liu, and T. He: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2210–23.

    Article  Google Scholar 

  17. Y. Guo, L. Cao, G. Wang, and C. Liu: Metall. Mater. Trans. B, 2022, vol. 2022B, pp. 1–2.

    Google Scholar 

  18. J.R. Wilcox and R.W.K. Honeycombe: Mater. Sci. Technol., 1987, vol. 3, pp. 849–54.

    Article  CAS  Google Scholar 

  19. L.M. Cheng, E.B. Hawbolt, and T.R. Meadowcroft: Can. Metall. Q., 2000, vol. 39, pp. 73–86.

    Article  CAS  Google Scholar 

  20. J.F. Chávez-Alcalá, A. Rodríguez-Reyes, E.G. Navarrete-Ramos, H.J. Dorantes-Rosales, M.L. Saucedo-Muñoz, and V.M. López-Hirata: ISIJ Int., 2001, vol. 41, pp. 1532–34.

    Article  Google Scholar 

  21. G. Jeanmaire, M. Dehmas, A. Redjaïmia, S. Puech, and G. Fribourg: Mater. Charact., 2014, vol. 98, pp. 193–201.

    Article  CAS  Google Scholar 

  22. R. Radis, C. Schlacher, E. Kozeschnik, P. Mayr, N. Enzinger, H. Schröttner, and C. Sommitsch: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1132–39.

    Article  Google Scholar 

  23. Y. Zhang, D. Zou, T. Wei, J. Li, L. Tong, and W. Zhang: Mater. Res. Express, 2020, vol. 7, p. 36513.

    Article  CAS  Google Scholar 

  24. H.C. Kim, J.H. Lee, Y.G. Heon, C.Y. Jo, J.W. Kim, and S.G. Kim: Mater. Sci. Forum, 2005, vol. 486, pp. 428–31.

    Article  Google Scholar 

  25. L. Cao and G. Zhou: Mater. Charact., 1996, vol. 36, pp. 65–72.

    Article  Google Scholar 

  26. B.G. Thomas, J.K. Brimacombe, and I.V. Samarasekera: ISS Trans., 1986, vol. 7, pp. 7–20.

    CAS  Google Scholar 

  27. D.N. Crowther and B. Mintz: Mater. Sci. Technol., 1986, vol. 2, pp. 1099–05.

    Article  CAS  Google Scholar 

  28. B. Mintz: ISIJ Int., 1999, vol. 39, pp. 833–55.

    Article  CAS  Google Scholar 

  29. H.G. Suzuki, S. Nishimura, J. Imamura, and Y. Nakamura: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 169–77.

    Article  CAS  Google Scholar 

  30. N.E. Hannerz: Trans. Iron Steel Inst. Jpn., 1985, vol. 25, pp. 149–58.

    Article  CAS  Google Scholar 

  31. X. Zhang, L. Fan, Y. Xu, J. Li, X. Xiao, and L. Jiang: Mater. Des., 2015, vol. 65, pp. 682–89.

    Article  CAS  Google Scholar 

  32. T. Ichiyama, M. Koizumi, I. Yoshida, K. Watanabe, and S. Nishiumi: Trans. Iron Steel Inst. Jpn., 1970, vol. 10, pp. 429–41.

    Article  Google Scholar 

  33. K.J. Irvine, F.B. Pickering, and T. Gladman: Iron Steel Inst. J., 1967, vol. 205, pp. 161–82.

    CAS  Google Scholar 

  34. R. Habu, M. Miyata, S. Sekino, and S. Goda: Trans. Iron Steel Inst. Jpn., 1978, vol. 18, pp. 492–500.

    Article  CAS  Google Scholar 

  35. J.M. Kim and J.-K. Park: Philos. Mag. Lett., 2017, vol. 97, pp. 320–27.

    Article  CAS  Google Scholar 

  36. R. Radis and E. Kozeschnik: Model. Simul. Mater. Sci. Eng., 2010, vol. 18, p. 55003.

    Article  Google Scholar 

  37. Y. Luo, L. Zhang, M. Li, and S. Sridhar: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 894–901.

    Article  Google Scholar 

  38. D. Kalisz and S. Rzadkosz: Arch. Foundry Eng., 2013, vol. 13, pp. 63–68.

    Article  CAS  Google Scholar 

  39. J. Wang, S. Song, Z. Xue, D. Tang, G. Tong, and D. Liu: J. Iron Steel Res. Int., 2022, vol. 2022, pp. 1–3.

    Google Scholar 

  40. M. Martins and L.C. Casteletti: Mater. Charact., 2009, vol. 60, pp. 792–95.

    Article  CAS  Google Scholar 

  41. L. Weber and P.J. Uggowitzer: Mater. Sci. Eng. A, 1998, vol. 242, pp. 222–29.

    Article  Google Scholar 

  42. H. Suito and H. Ohta: ISIJ Int., 2006, vol. 46, pp. 33–41.

    Article  CAS  Google Scholar 

  43. H.F. Beeghly: Anal. Chem., 1949, vol. 21, pp. 1513–19.

    Article  CAS  Google Scholar 

  44. I. Konovalenko, P. Maruschak, J. Brezinová, and J. Brezina: Materials (Basel), 2019, vol. 12, p. 2051.

    Article  CAS  Google Scholar 

  45. P.J. Noell, J.D. Carroll, and B.L. Boyce: Acta Mater., 2018, vol. 161, pp. 83–98.

    Article  CAS  Google Scholar 

  46. M.-H. Cai, C.-Y. Lee, and Y.-K. Lee: Scr. Mater., 2012, vol. 66, pp. 606–09.

    Article  CAS  Google Scholar 

  47. L. Zheng, A. Malfliet, P. Wollants, B. Blanpain, and M. Guo: ISIJ Int., 2016, vol. 56, pp. 926–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [52174309, 51904067], and by the Program of Introducing Talents of Discipline to Universities (No. B21001).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huabing Li or Zhouhua Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Lou, J., Wang, X. et al. Formation Behavior of AlN Precipitates in Super-Duplex Stainless Steel and the Impact on Mechanical Properties. Metall Mater Trans A 54, 3300–3310 (2023). https://doi.org/10.1007/s11661-023-07100-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07100-1

Navigation