Skip to main content
Log in

Effects of Niobium on Microstructure, Hardness and Wear Behavior for High-Speed Steel Rolls

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In order to refine the microstructure and improve the performance of high-speed steel (HSS) roll, the effects of Nb addition on the microstructure, hardness, and wear behavior were evaluated. The results show that adding Nb raises the precipitation temperature of NbC, which is even higher than the liquidus temperature. The NbC precipitates are accompanied by alloying elements such as Mo and V, which decreases the C and alloying element contents in the liquid phase. The variation of the content of C and alloying elements and refined austenite dendrites further refine the microstructure of the eutectic carbides of M6C, M2C, and Cr7C3. The refined as-cast microstructure increases the hardness of cast HSS rolls. However, a decrease in the content of C in austenite weakens the precipitation strengthening effect after heat treatment and results in a slight decrease of the hardness of HSS rolls with the increase of the addition of Nb. The refinement of microstructure, especially primary carbides, improves the continuity and uniformity of oxide film formed on the wear surface, which efficiently retards the wear of the matrix and improves the wear resistance of HSS rolls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C.K. Kim, Y.C. Kim, J.I. Park, S. Lee, N.J. Kim, and J.S. Yang: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 87–97.

    Article  CAS  Google Scholar 

  2. G.Y. Deng, H.T. Zhu, A.K. Tieu, L.H. Su, M. Reid, L. Zhang, P.T. Wei, X. Zhao, H. Wang, J. Zhang, J.T. Li, T.D. Ta, Q. Zhu, C. Kong, and Q. Wu: Int. J. Mech. Sci., 2017, vol. 131–132, pp. 811–26.

    Article  Google Scholar 

  3. L. Ma, W. Zhao, Z. Liang, X. Wang, L. Xie, L. Jiao, and T. Zhou: Mater. Sci. Eng. A, 2014, vol. 609, pp. 16–25.

    Article  CAS  Google Scholar 

  4. L. Xu, S. Wei, F. Xiao, H. Zhou, G. Zhang, and J. Li: Wear, 2017, vol. 376–377, pp. 968–74.

    Article  Google Scholar 

  5. A.S. Chaus: Met. Sci. Heat Treat., 2005, vol. 47, pp. 53–61.

    Article  CAS  Google Scholar 

  6. E. Franco, C.E. da Costa, J.C.G. Milan, S.A. Tsipas, and E. Gordo: Surf. Coat. Technol., 2020, vol. 384, p. 125306.

    Article  CAS  Google Scholar 

  7. M. Kalantar, H. Najafi, and M.R. Afshar: Met. Mater. Int., 2018, vol. 25, pp. 229–37.

    Article  Google Scholar 

  8. S. Kheirandish and A. Noorian: J. Iron Steel Res. Int., 2008, vol. 15, pp. 61–66.

    Article  CAS  Google Scholar 

  9. H. Wang, L. Hou, J. Zhang, L. Lu, H. Cui, and J. Zhang: Mater. Charact., 2015, vol. 106, pp. 245–54.

    Article  CAS  Google Scholar 

  10. J. Yoo, W.M. Choi, B.J. Lee, G.Y. Kim, H. Kim, W.D. Choi, Y.J. Oh, and S. Lee: Met. Mater. Int., 2019, vol. 26, pp. 1506–14.

    Article  Google Scholar 

  11. Y. Sano, T. Hattori, and M. Haga: ISIJ Int., 1992, vol. 32, pp. 1194–1201.

    Article  CAS  Google Scholar 

  12. M.M. Serna and J.L. Rossi: Mater. Lett., 2009, vol. 63, pp. 691–93.

    Article  CAS  Google Scholar 

  13. A.S. Chaus and M. Dománková: J. Mater. Eng. Perform., 2012, vol. 22, pp. 1412–20.

    Article  Google Scholar 

  14. M. Boccalini and H. Goldenstein: Int. Mater. Rev., 2001, vol. 46, pp. 92–115.

    Article  CAS  Google Scholar 

  15. Y.W. Luo, H.J. Guo, X.L. Sun, J. Guo, and F. Wang: JOM, 2018, vol. 72, pp. 326–32.

    Article  Google Scholar 

  16. H. Zhou, J.G. Wang, and S.S. Jia: Acta Metall. Sin., 1997, vol. 33, pp. 838–43.

    CAS  Google Scholar 

  17. S. Kheirandish, Y.H.K. Kharrazi, and S. Mirdammadi: ISIJ Int., 1997, vol. 37, pp. 721–25.

    Article  CAS  Google Scholar 

  18. H. Halfa, M. Eissa, K. El-Fawakhry, and T. Mattar: Steel Res. Int., 2012, vol. 83, pp. 32–42.

    Article  CAS  Google Scholar 

  19. S. Kheirandish: ISIJ Int., 2001, vol. 41, pp. 1502–09.

    Article  CAS  Google Scholar 

  20. M. Pellizzari, D. Cescato, and M.G. De Flora: Wear, 2009, vol. 267, pp. 467–75.

    Article  CAS  Google Scholar 

  21. M. Pellizzari, A. Molinari, and G. Straffelini: Wear, 2005, vol. 259, pp. 1281–89.

    Article  CAS  Google Scholar 

  22. L. Hao, H. Wu, D. Wei, X. Cheng, J. Zhao, S. Luo, L. Jiang, and Z. Jiang: Wear, 2017, vol. 376–377, pp. 1580–85.

    Article  Google Scholar 

  23. H. Pourasiabi and J.D. Gates: Wear, 2022, vol. 498–499, p. 204312.

    Article  Google Scholar 

  24. W.H. Kan, G. Proust, V. Bhatia, L. Chang, K. Dolman, T. Lucey, X. Tang, and J. Cairney: Wear, 2019, vol. 420–421, pp. 149–62.

    Article  Google Scholar 

  25. H. Pourasiabi and J.D. Gates: Mater. Des., 2021, vol. 212, p. 110261.

    Article  CAS  Google Scholar 

  26. A.S.O. Pimentel, W.L. Guesser, W.J.R.C. Silva, P.D. Polabella, M. Woydt, and J. Burbank: Wear, 2019, vol. 440–441, p. 203065.

    Article  Google Scholar 

  27. J.P. Perdew and A. Zunger: Phys. Rev. B, 1981, vol. 23, pp. 5048–79.

    Article  CAS  Google Scholar 

  28. M.D. Segall, P.J.D. Linda, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne: J. Phys.: Condens. Matter, 2002, vol. 14, pp. 2717–44.

    CAS  Google Scholar 

  29. M. Kang and Y.K. Lee: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3365–74.

    Article  Google Scholar 

  30. J. Guo, L. Ai, T. Wang, Y. Feng, D. Wan, and Q. Yang: Mater. Sci. Eng. A, 2018, vol. 715, pp. 359–69.

    Article  CAS  Google Scholar 

  31. X.F. Zhou, F. Fang, F. Li, and J.Q. Jiang: J. Mater. Sci., 2010, vol. 46, pp. 1196–1202.

    Article  Google Scholar 

  32. C. Vergne, C. Boher, R. Gras, and C. Levaillant: Wear, 2006, vol. 260, pp. 957–75.

    Article  CAS  Google Scholar 

  33. A. Molinari, A. Tremea, M. Pellizzari, A. Biggi, and G. Corbo: Mater. Sci. Technol., 2013, vol. 18, pp. 1574–80.

    Article  Google Scholar 

  34. H.W. Zhu, W.J. Ke, Z.P. Zhao, S. Qin, F.R. Xiao, and B. Liao: Mater. Des., 2018, vol. 139, pp. 531–40.

    Article  CAS  Google Scholar 

  35. W.Y. Guo, X.Q. Hu, X.P. Ma, and D.Z. Li: Acta Metall. Sin., 2016, vol. 52, pp. 769–77.

    CAS  Google Scholar 

  36. W. Liu, Y. Guo, Y. Cao, J. Wang, Z. Hou, M. Sun, B. Xu, and D. Li: J. Alloys Compd., 2021, vol. 889, p. 161755.

    Article  Google Scholar 

  37. Y. Zhang, R. Song, Y. Wang, C. Cai, K. Guo, Z. Zhao, S. Songchuan, X. Wang, and K. Wang: Mater. Charact., 2022, vol. 183, p. 111611.

    Article  CAS  Google Scholar 

  38. Y. Wang, S. Chu, B. Mao, H. Xing, J. Zhang, and B. Sun: J. Mater. Res. Technol., 2022, vol. 18, pp. 1521–33.

    Article  CAS  Google Scholar 

  39. Y.W. Luo, H.J. Guo, X.L. Sun, J. Guo, and F. Wang: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 5976–86.

    Article  Google Scholar 

  40. Y. Pan, Z. Pi, B. Liu, W. Xu, C. Zhang, X. Qu, and X. Lu: Mater. Sci. Eng. A, 2020, vol. 787, p. 139480.

    Article  CAS  Google Scholar 

  41. G.F. Sun, K. Wang, R. Zhou, A.X. Feng, and W. Zhang: Mater. Des., 2015, vol. 65, pp. 606–16.

    Article  CAS  Google Scholar 

  42. S. Zhou, Y. Shen, H. Zhang, and D. Chen: Chin. J. Mech. Eng., 2014, vol. 28, pp. 140–47.

    Article  Google Scholar 

  43. X. Song, Y. Wang, X. Zhao, J. Zhang, Y. Li, Y. Wang, and Z. Chen: J. Alloys Compd., 2022, vol. 911, p. 164959.

    Article  CAS  Google Scholar 

  44. Q. Zhu, H.T. Zhu, A.K. Tieu, M. Reid, and L.C. Zhang: Corros. Sci., 2010, vol. 52, pp. 2707–15.

    Article  CAS  Google Scholar 

  45. F. Delaunois, V.I. Stanciu, A. Megret, and M. Sinnaeve: Int. J. Adv. Manuf. Technol., 2021, vol. 119, pp. 677–89.

    Article  Google Scholar 

  46. L. Xu, S. Wei, J. Xing, and R. Long: Tribol. Int., 2014, vol. 70, pp. 34–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51971198), Natural Science Foundation – Steel and Iron Foundation of Hebei Province (Grant No. E2019203381) and the Innovation Ability Promotion Program of Hebei (Grant No. 22567609H).

Author Contributions

H-nL: conceptualization, methodology, writing—original draft. S-cH: data curation. B-hZ: data curation. G-yQ: project administration, funding acquisition. J-bL: data curation, resources. F-rX: supervision, visualization, writing—review & editing.

Data Availability

All data is available at the time of need.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gui-ying Qiao or Fu-ren Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Hn., Han, Sc., Zhang, Bh. et al. Effects of Niobium on Microstructure, Hardness and Wear Behavior for High-Speed Steel Rolls. Metall Mater Trans A 54, 3271–3285 (2023). https://doi.org/10.1007/s11661-023-07098-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07098-6

Navigation