Skip to main content
Log in

Acceleration of Bainitic Transformation Through Chemical Patterning of Austenite

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The chemically patterned austenite with alternately distributed Mn-rich and Mn-poor regions is introduced via fast-heating on initial pearlite microstructure in a Fe–0.6C–2.3Mn–1.7Si steel. The bainitic transformation kinetics is accelerated transformed from chemically patterned austenite compared with chemically homogeneous austenite, which can be attributed to the increased driving force and reduced nucleation activation energy for bainite formation in the Mn-poor regions, as well as the more fluent carbon diffusion path caused by chemical patterning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Data will be made available on request.

References

  1. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, and P. Brown: Mater. Sci. Technol.-Lond., 2001, vol. 17, pp. 512–16.

    Article  CAS  Google Scholar 

  2. F.C. Zhang and Z.N. Yang: Engineering, 2019, vol. 5, pp. 319–28.

    Article  CAS  Google Scholar 

  3. G. Gao, R. Liu, K. Wang, X. Gui, R.D.K. Misra, and B. Bai: Scr. Mater., 2020, vol. 184, pp. 12–8.

    Article  CAS  Google Scholar 

  4. S. Singh and H. Bhadeshia: Mater. Sci. Eng. A, 1998, vol. 245, pp. 72–79.

    Article  Google Scholar 

  5. C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia: ISIJ Int., 2003, vol. 43, pp. 1821–25.

    Article  CAS  Google Scholar 

  6. D. Quidort and Y. Brechet: Acta Mater., 2001, vol. 49, pp. 4161–70.

    Article  CAS  Google Scholar 

  7. A.M. Ravi, A. Kumar, M. Herbig, J. Sietsma, and M.J. Santofimia: Acta Mater., 2020, vol. 188, pp. 424–34.

    Article  CAS  Google Scholar 

  8. T. Wang, L. Qian, W. Yu, K. Li, F. Zhang, and J. Meng: Mater. Charact., 2022, vol. 184, 111656.

    Article  CAS  Google Scholar 

  9. W. Gong, Y. Tomota, S. Harjo, Y.H. Su, and K. Aizawa: Acta Mater., 2015, vol. 85, pp. 243–49.

    Article  CAS  Google Scholar 

  10. A.M. Ravi, A. Navarro-Lόpez, J. Sietsma, and M.J. Santofimia: Acta Mater., 2020, vol. 188, pp. 394–405.

    Article  CAS  Google Scholar 

  11. A.M. Ravi, J. Sietsma, and M.J. Santofimia: Scr. Mater., 2020, vol. 185, pp. 7–11.

    Article  CAS  Google Scholar 

  12. D. Sun, C. Liu, X. Long, X. Zhao, Y. Li, B. Lv, F. Zhang, and Z. Yang: Mater. Sci. Eng. A, 2021, vol. 811, 141055.

    Article  CAS  Google Scholar 

  13. J. He, A. Zhao, C. Zhi, and H. Fan: Scr. Mater., 2015, vol. 107, pp. 71–4.

    Article  CAS  Google Scholar 

  14. H. Hu, H.S. Zurob, G. Xu, D. Embury, and G.R. Purdy: Mater. Sci. Eng. A, 2015, vol. 626, pp. 34–40.

    Article  CAS  Google Scholar 

  15. W. Sun, Y. Wu, S. Yang, and C.R. Hutchinson: Scr. Mater., 2018, vol. 146, pp. 60–63.

    Article  CAS  Google Scholar 

  16. B. Sun, W. Lu, B. Gault, R. Ding, S.K. Makineni, D. Wan, C. Wu, H. Chen, D. Ponge, and D. Raabe: Nat. Mater., 2021, vol. 20, pp. 1629–34.

    Article  CAS  Google Scholar 

  17. C. Zhang, Z. Xiong, D. Yang, and X. Cheng: Acta Mater., 2022, vol. 235, 118060.

    Article  CAS  Google Scholar 

  18. C. Zhang, C. Liu, H. Guo, S. Sun, H. Chen, Y. Liu, and R. Ding: Scr. Mater., 2022, vol. 218, 114822.

    Article  CAS  Google Scholar 

  19. T. Lolla, G. Cola, B. Narayanan, B. Alexandrov, and S.S. Babu: Mater. Sci. Technol. Lond., 2011, vol. 27, pp. 863–75.

    Article  CAS  Google Scholar 

  20. G. Liu, Z. Dai, Z. Yang, C. Zhang, J. Li, and H. Chen: J. Mater. Sci. Technol., 2020, vol. 49, pp. 70–80.

    Article  Google Scholar 

  21. F. Moszner, E. Povoden-Karadeniz, S. Pogatscher, P.J. Uggowitzer, Y. Estrin, S.S.A. Gerstl, E. Kozeschnik, and J.F. Löffler: Acta Mater., 2014, vol. 72, pp. 99–109.

    Article  CAS  Google Scholar 

  22. C.M. Parish, K. Wang, and P.D. Edmondson: Scr. Mater., 2018, vol. 143, pp. 169–75.

    Article  CAS  Google Scholar 

  23. Y. Xu, G. Xu, X. Mao, G. Zhao, and S. Bao: Metals, 2017, vol. 7, p. 330.

    Article  Google Scholar 

  24. Y. Ohmori and T. Maki: Mater. Trans. JIM, 1991, vol. 32, pp. 631–41.

    Article  CAS  Google Scholar 

  25. Z. Yang and H. Fang: Curr. Opin. Solid State Mater. Sci., 2005, vol. 9, pp. 277–86.

    Article  CAS  Google Scholar 

  26. G. Miyamoto, K. Yokoyama, and T. Furuhara: Acta Mater., 2019, vol. 177, pp. 187–97.

    Article  CAS  Google Scholar 

  27. G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan, and B. Bai: Acta Mater., 2014, vol. 76, pp. 425–33.

    Article  CAS  Google Scholar 

  28. T. Sourmail and V. Smanio: Acta Mater., 2013, vol. 61, pp. 2639–48.

    Article  CAS  Google Scholar 

  29. S.M.C. van Bohemen: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 285–96.

    Article  CAS  Google Scholar 

  30. M. Kang, Y. Yang, Q. Wei, Q. Yang, and X. Meng: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1941–46.

    Article  CAS  Google Scholar 

  31. M.G. Akben, T. Chandra, P. Plassiard, and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 591–601.

    Article  CAS  Google Scholar 

  32. R. Ding, C. Zhang, Y. Wang, C. Liu, Y. Yao, J. Zhang, Z. Yang, C. Zhang, Y. Liu, and H. Chen: Acta Mater., 2023, vol. 250, 118869.

    Article  CAS  Google Scholar 

  33. S.A. Khan and H.K.D.H. Bhadeshia: Metall. Trans. A, 1990, vol. 21A, pp. 859–75.

    Article  CAS  Google Scholar 

  34. S.-J. Lee, J.-S. Park, and Y.-K. Lee: Scr. Mater., 2008, vol. 59, pp. 87–90.

    Article  CAS  Google Scholar 

  35. L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du: Mater. Sci. Technol. Lond., 2011, vol. 27, pp. 1657–63.

    Article  CAS  Google Scholar 

  36. F. Hu, P.D. Hodgson, and K.M. Wu: Mater. Lett., 2014, vol. 122, pp. 240–43.

    Article  CAS  Google Scholar 

  37. G. Xu, F. Liu, L. Wang, and H. Hu: Scr. Mater., 2013, vol. 68, pp. 833–36.

    Article  CAS  Google Scholar 

  38. G. Miyamoto, H. Usuki, Z.D. Li, and T. Furuhara: Acta Mater., 2010, vol. 58, pp. 4492–02.

    Article  CAS  Google Scholar 

  39. M. Enomoto, S. Li, Z.N. Yang, C. Zhang, and Z.G. Yang: Calphad, 2018, vol. 61, pp. 116–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding from National Key Technologies Research and Development Program of China (No. 2021YFB3703500) and Fund of Key Laboratory of Advanced Materials of Ministry of Education (No. ADV22-6). G. Gao and Z. Yang acknowledges the support from National Natural Science Foundation of China (Nos. 52122410 and 51771014). The authors appreciate Ms. Haiyan Yu of Guobiao (Beijing) Testing &Certification Co., Ltd for TEM and EDS analysis.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guhui Gao or Zhinan Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 575 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, G., Liu, Z., Feng, C. et al. Acceleration of Bainitic Transformation Through Chemical Patterning of Austenite. Metall Mater Trans A 54, 2975–2981 (2023). https://doi.org/10.1007/s11661-023-07084-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07084-y

Navigation