Skip to main content
Log in

Influence of Annealing Treatment on α Phase Globularization, Mechanical Properties, and Corrosion Performance of Hot-Rolled Ti–0.3Mo–0.8Ni Alloy Melted by Electron Beam Cold Hearth Technology

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ti–0.3Mo–0.8Ni (TA10) titanium alloy has attracted attention owing to its mechanical properties and corrosion resistance. Titanium alloy ingots are mostly obtained by vacuum arc remelting (VAR); however, if electron beam cold hearth melting (EBCHM) technology is used, the cost of production can be reduced considerably. However, there have been few studies of TA10 alloy melted by EBCHM technology. The effect of annealing temperature on the microstructure evolution, mechanical properties, and corrosion resistance of TA10 alloy melted by EBCHM technology was investigated in this study. The results demonstrate that the equiaxed α phase grew up and tended to be equiaxed with the increase of annealing temperature. The lamellar α phase transformed into an equiaxed α phase with the average grain size of 5.78 μm when annealed at 780 °C. The plasticity and corrosion resistance of the alloy increased gradually, while the strength and Vickers hardness decreased with elevated annealing temperature. This is related to the globularization of the α phase and merging of grain boundaries during the annealing treatment. After annealed at 780 °C, the strength and ductility product (UTS × EL) of the alloy was the highest, and it also had a good corrosion resistance. Thus, the alloy annealed at 780 °C has the best comprehensive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. D. Banerjee and J.C. Williams: Acta Mater., 2013, vol. 61, pp. 844–79.

    Article  CAS  Google Scholar 

  2. A. Drach, I. Tsukrov, J. DeCew, J. Aufrecht, A. Grohbauer, and U. Hofmann: Corros. Sci., 2013, vol. 76, pp. 453–64.

    Article  CAS  Google Scholar 

  3. N.T.C. Oliveira and A.C. Guastaldi: Corros. Sci., 2008, vol. 50, pp. 938–45.

    Article  CAS  Google Scholar 

  4. S.F. Jawed, C.D. Rabadia, Y.J. Liu, L.Q. Wang, P. Qin, Y.H. Li, X.H. Zhang, and L.C. Zhang: Mater. Sci. Eng. C, 2020, vol. 110, p. 110728.

    Article  CAS  Google Scholar 

  5. H.R. Tiyyagura, S. Kumari, M.K. Mohan, B. Pant, and M. Nageswara Rao: J. Alloys Compd., 2019, vol. 775, pp. 518–23.

    Article  CAS  Google Scholar 

  6. S. Yan, G.-L. Song, Z. Li, H. Wang, D. Zheng, F. Cao, M. Horynova, M.S. Dargusch, and L. Zhou: J. Mater. Sci. Technol., 2018, vol. 34, pp. 421–35.

    Article  CAS  Google Scholar 

  7. Q. Zhao, J. Zhao, X. Cheng, Y. Huang, L. Lu, and X. Li: Surf. Coat. Technol., 2020, vol. 382, p. 125171.

    Article  CAS  Google Scholar 

  8. Y. Zhang, L. Zhou, J. Sun, M. Han, R. Georg, F. Jochen, J. Yang, and Y. Zhao: Rare Met. Mater. Eng., 2008, vol. 37, pp. 1973–77.

    Article  CAS  Google Scholar 

  9. J. Yu, Z. Yin, Z. Huang, S. Zhao, H. Huang, K. Yu, R. Zhou, and H. Xiao: Materials, 2022, vol. 15, p. 7122.

    Article  CAS  Google Scholar 

  10. H. Liu, S. Shi, Q. You, L. Zhao, and Y. Tan: Vacuum, 2018, vol. 157, pp. 395–401.

    Article  Google Scholar 

  11. H. Wang, Y. Zhao, Q. Zhao, S. Xin, W. Zhou, and W. Zeng: Mater. Charact., 2021, vol. 174, p. 110975.

    Article  CAS  Google Scholar 

  12. W. Zhu, J. Lei, B. Su, and Q. Sun: Mater. Sci. Eng. A, 2020, vol. 782, p. 139248.

    Article  CAS  Google Scholar 

  13. Z.B. Wang, H.X. Hu, Y.G. Zheng, W. Ke, and Y.X. Qiao: Corros. Sci., 2016, vol. 103, pp. 50–65.

    Article  CAS  Google Scholar 

  14. Y. Yang, C. Xia, Z. Feng, X. Jiang, B. Pan, X. Zhang, M. Ma, and R. Liu: Corros. Sci., 2015, vol. 101, pp. 56–65.

    Article  CAS  Google Scholar 

  15. A. Sotniczuk, D. Kuczyńska-Zemła, A. Królikowski, and H. Garbacz: Corros. Sci., 2019, vol. 147, pp. 342–49.

    Article  CAS  Google Scholar 

  16. S. Rezaee, A. Arman, S. Jurečka, A.G. Korpi, F. Mwema, C. Luna, D. Sobola, S. Kulesza, R. Shakoury, M. Bramowicz, and A. Ahmadpourian: Superlattices Microstruct., 2020, vol. 146, p. 106681.

    Article  CAS  Google Scholar 

  17. A. Fattah-Alhosseini, A.R. Ansari, Y. Mazaheri, and M.K. Keshavarz: Mater. Sci. Eng. C, 2017, vol. 71, pp. 771–79.

    Article  CAS  Google Scholar 

  18. Y. Su, F. Kong, F. You, X. Wang, and Y. Chen: Vacuum, 2020, vol. 173, p. 109135.

    Article  CAS  Google Scholar 

  19. C. Wu, L. Huang, and C.M. Li: Mater. Sci. Eng. A, 2020, vol. 773, p. 138851.

    Article  CAS  Google Scholar 

  20. A. Ghosh, A. Singh, and N.P. Gurao: Mater. Charact., 2017, vol. 125, pp. 83–93.

    Article  CAS  Google Scholar 

  21. Q. Zhao, Q. Sun, S. Xin, Y. Chen, C. Wu, H. Wang, J. Xu, M. Wan, W. Zeng, and Y. Zhao: Mater. Sci. Eng. A, 2022, vol. 845, p. 143260.

    Article  CAS  Google Scholar 

  22. Z. Huang, H. Xiao, J. Yu, H. Zhang, H. Huang, K. Yu, and R. Zhou: J. Market. Res., 2022, vol. 18, pp. 4859–70.

    CAS  Google Scholar 

  23. Z. Zhu, Z. Li, R. Zhou, H. Huang, W. Xiong, and X. Li: Philos. Mag. Lett., 2022, vol. 102, pp. 270–77.

    Article  CAS  Google Scholar 

  24. H. Shahmir and T.G. Langdon: Acta Mater., 2017, vol. 141, pp. 419–26.

    Article  CAS  Google Scholar 

  25. K. Wang, M. Wu, Z. Yan, D. Li, R. Xin, and Q. Liu: J. Alloys Compd., 2018, vol. 752, pp. 14–22.

    Article  CAS  Google Scholar 

  26. S.K. Pradhan, S. Tripathy, R. Singh, P. Murugaiyan, D. Roy, M.M. Humane, and S.G. Chowdhury: J. Alloys Compd., 2022, vol. 922, p. 166126.

    Article  CAS  Google Scholar 

  27. Z. Liu, P. Li, L. Xiong, T. Liu, and L. He: Mater. Sci. Eng. A, 2017, vol. 680, pp. 259–69.

    Article  CAS  Google Scholar 

  28. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Prog. Mater. Sci., 2014, vol. 60, pp. 130–207.

    Article  CAS  Google Scholar 

  29. J. Zhao, L. Lv, K. Wang, and G. Liu: J. Mater. Sci. Technol., 2020, vol. 38, pp. 125–34.

    Article  CAS  Google Scholar 

  30. X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, and Y. Zhu: Acta Mater., 2016, vol. 116, pp. 43–52.

    Article  CAS  Google Scholar 

  31. J. Gu, X. Wang, J. Bai, J. Ding, S. Williams, Y. Zhai, and K. Liu: Mater. Sci. Eng. A, 2018, vol. 712, pp. 292–301.

    Article  CAS  Google Scholar 

  32. J. Su, X. Ji, J. Liu, J. Teng, F. Jiang, D. Fu, and H. Zhang: J. Mater. Sci. Technol., 2022, vol. 107, pp. 136–48.

    Article  Google Scholar 

  33. J.-H. Song, K.-J. Hong, T.K. Ha, and H.T. Jeong: Mater. Sci. Eng. A, 2007, vol. 449–451, pp. 144–48.

    Article  Google Scholar 

  34. C. de Formanoir, A. Brulard, S. Vivès, G. Martin, F. Prima, S. Michotte, E. Rivière, A. Dolimont, and S. Godet: Mater. Res. Lett., 2017, vol. 5, pp. 201–08.

    Article  Google Scholar 

  35. H. Nasiri-Abarbekoh, A. Ekrami, A.A. Ziaei-Moayyed, and M. Shohani: Mater. Des., 2012, vol. 34, pp. 268–74.

    Article  CAS  Google Scholar 

  36. B. Su, L. Luo, B. Wang, Y. Su, L. Wang, R.O. Ritchie, E. Guo, T. Li, H. Yang, H. Huang, J. Guo, and H. Fu: J. Mater. Sci. Technol., 2021, vol. 62, pp. 234–48.

    Article  CAS  Google Scholar 

  37. D. Huang, J. Hu, G.-L. Song, and X. Guo: Electrochim. Acta, 2011, vol. 56, pp. 10166–78.

    Article  CAS  Google Scholar 

  38. Z.B. Wang, H.X. Hu, C.B. Liu, and Y.G. Zheng: Electrochim. Acta, 2014, vol. 135, pp. 526–35.

    Article  CAS  Google Scholar 

  39. C. Peng, Y. Liu, H. Liu, S. Zhang, C. Bai, Y. Wan, L. Ren, and K. Yang: J. Mater. Sci. Technol., 2019, vol. 35, pp. 2121–31.

    Article  CAS  Google Scholar 

  40. X. Yang, Z. Zhao, Y. Ning, H. Guo, H. Li, S. Yuan, and S. Xin: Mater. Sci. Eng. A, 2019, vol. 745, pp. 240–51.

    Article  CAS  Google Scholar 

  41. L. Zhou, T. Yuan, R. Li, J. Tang, M. Wang, L. Li, and C. Chen: J. Alloys Compd., 2019, vol. 775, pp. 1164–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author (Jiaxin Yu) greatly wished to thank Qingquan Yuan for data analysis and valuable discussions. The work was supported by the Yunnan Provincial Major Science and Technology Special Plan of China (No. 202202AB080016) and the National Key R&D Program of China (No. 2016YFB0301202).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Yuan, Q., Huang, H. et al. Influence of Annealing Treatment on α Phase Globularization, Mechanical Properties, and Corrosion Performance of Hot-Rolled Ti–0.3Mo–0.8Ni Alloy Melted by Electron Beam Cold Hearth Technology. Metall Mater Trans A 54, 2872–2889 (2023). https://doi.org/10.1007/s11661-023-07065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07065-1

Navigation