Skip to main content
Log in

Electrically Induced Cube ({001} < 100 >) Texture in Non-oriented Electrical Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

It is well known that pulsed electric current can significantly accelerate the recrystallization process of cold deformed metals. However, the formation of recrystallized texture is closely related to the nucleation and growth of grains. Here, we apply the pulsed electric current to control the recrystallization grain to induce the cube texture in non-oriented silicon steel. We calculated that the recrystallization activation energy of the pulsed sample (181 kJ/mol) is lower than that of the annealed sample (214 kJ/mol), which separates the kinetic mechanism of recrystallization under current from simple Joule heating. In analyzing the formation of cube texture component with respect to the theories of oriented growth and oriented nucleation, compared with the α-fiber, current can accelerate the nucleation of cube grains in the γ-fiber due to the higher GND in the γ-fiber, in addition, the percentage of cube grain boundaries satisfying the criteria of 20 to 40 deg disorientation increased after the current was applied. It has been reported that the grain boundaries with disorientations of 20 to 40 deg has a high boundary mobility, which allows the cube grains to grow faster. The faster recovery in γ-fiber and growth rate of crystal nucleus in pulsed samples aided cube grains in consuming the deformed matrix more so than changing nucleation position. As a consequence, the current can increase the probability of cube grains recrystallized from the γ-fiber greatly and accelerate the cube grain boundary mobility, which is a more significant factor in obtaining a strong cubic texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H. Conrad, Z. Guo, and A.F. Sprecher: Scr. Metall., 1990, vol. 24, pp. 359–62.

    Article  CAS  Google Scholar 

  2. Y. Liu, L. Wang, Y. Wang, H. Liu, X. Chen, and Y. Yu: Mater. Sci. Forum, 2010, vol. 654, pp. 464–67.

    Article  Google Scholar 

  3. Z. Xu, G. Tang, F. Ding, S. Tian, and H. Tian: Appl. Phys. A, 2007, vol. 88, pp. 429–33.

    Article  CAS  Google Scholar 

  4. L. Guan, G.Y. Tang, Y.B. Jiang, and P.K. Chu: J. Alloy Compd., 2009, vol. 487, pp. 309–13.

    Article  CAS  Google Scholar 

  5. X.P. Li, X.H. Li, J. Zhu, X.X. Ye, and G.Y. Tang: Scr. Mater., 2016, vol. 112, pp. 23–27.

    Article  CAS  Google Scholar 

  6. Z.J. Wang and H. Song: J. Alloy Compd., 2009, vol. 470, pp. 522–30.

    Article  CAS  Google Scholar 

  7. D. Waryoba, Z. Islam, B.M. Wang, and A. Haque: J. Alloy Compd., 2020, vol. 820, p. 153409.

    Article  CAS  Google Scholar 

  8. C.S. He, Y.D. Zhang, Y.N. Wang, X. Zhao, L. Zuo, and C. Esling: Scr. Mater., 2003, vol. 48, pp. 737–42.

    Article  CAS  Google Scholar 

  9. M.C. Zhou, X. Ba, and X.F. Zhang: Metall. Mater. Trans. A, 2011, vol. 51A, pp. 1481–86.

    Google Scholar 

  10. G.L. Hu, C.H. Shek, Y.H. Zhu, G.Y. Tang, and X. Qing: Mater. Trans., 2010, vol. 51, pp. 1390–94.

    Article  CAS  Google Scholar 

  11. H. Conrad, N. Karam, and S. Mannan: Scr. Metall., 1983, vol. 17, pp. 411–16.

    Article  CAS  Google Scholar 

  12. H. Conrad, N. Karam, S. Mannan, and A. Sprecher: Scr. Metall., 1988, vol. 22, pp. 235–38.

    Article  CAS  Google Scholar 

  13. D. Fabregue, B. Mouawad, and C.R. Hutchinson: Scr. Mater., 2014, vol. 92, pp. 3–6.

    Article  CAS  Google Scholar 

  14. J.E. Garay, S.C. Glade, U. Anselmi-Tamburini, P. Asoka-Kumar, and Z.A. Munir: Appl. Phys. Lett., 2004, vol. 85, p. 573.

    Article  CAS  Google Scholar 

  15. R.S. Qin, A. Rahnama, W.J. Lu, X.F. Zhang, and B. Elliott-Bowman: Mater. Sci. Technol., 2014, vol. 9, pp. 1040–44.

    Article  Google Scholar 

  16. X.F. Zhang and R.S. Qin: Appl. Phys. Lett., 2014, vol. 104, p. 114106.

    Article  Google Scholar 

  17. Z.H. Shan, J. Yang, J.F. Fan, H. Zhang, Q. Zhang, Y.C. Wu, and H.B. Dong: Mat. Sci. Eng. A, 2020, vol. 780, p. 139195.

    Article  CAS  Google Scholar 

  18. H. Conrad: Mat. Sci. Eng. A., 2000, vol. 287, pp. 227–37.

    Article  Google Scholar 

  19. Y.B. Jiang, G.Y. Tang, C. Shek, Y.H. Zhu, and Z.H. Xu: Acta Mater., 2009, vol. 57, pp. 4797–4808.

    Article  CAS  Google Scholar 

  20. X.B. Liu, W.J. Lu, and X.F. Zhang: Acta Mater., 2020, vol. 183, pp. 51–63.

    Article  CAS  Google Scholar 

  21. M.C. Zhou and X.F. Zhang: J. Mater. Sci. Technol., 2020, vol. 38, pp. 1–6.

    Article  Google Scholar 

  22. G.L. Hu, Y.H. Zhu, C. Shek, and G.Y. Tang: J. Mater. Res., 2011, vol. 26, pp. 917–22.

    Article  CAS  Google Scholar 

  23. G.L. Hu, G.Y Tang, Y.H. Zhu, and C. Shek: Metall. Mater. Trans. A., 2011, vol. 42A, pp. 3484–90.

  24. J.W.F. Dorleijn: Doctoral Thesis, TE Delft, 1977.

  25. R.S. Qin: Mater. Sci. Technol., 2015, vol. 31, pp. 203–06.

    Article  CAS  Google Scholar 

  26. A. Rahnama and R.S. Qin: Sci. Rep., 2017, vol. 7, p. 42732.

    Article  CAS  Google Scholar 

  27. W.B. Dai, X.L. Wang, H.M. Zhao, and X. Zhao: Mater. Trans., 2012, vol. 53, pp. 229–33.

    Article  CAS  Google Scholar 

  28. T. Haratani, W.B. Hutchinson, I.L. Dillamore, and P. Bate: Met. Sci., 1984, vol. 18, pp. 57–66.

    Article  CAS  Google Scholar 

  29. L. Cheng, N. Zhang, P. Yang, and W.M. Mao: Scr. Mater., 2012, vol. 67, pp. 899–902.

    Article  CAS  Google Scholar 

  30. J.T. Park and J.A. Szpunar: Acta Mater., 2003, vol. 51, pp. 3037–51.

    Article  CAS  Google Scholar 

  31. N. Shan, J. Liu, Y. Sha, F. Zhang, and L. Zuo, Mater. Res., 2019, vol. 22.

  32. Y.B. Xu, Y.X. Zhang, Y. Wang, C.G. Li, G.M. Cao, Z.Y. Liu, and G.D. Wang: Scr. Mater., 2014, vol. 87, pp. 17–20.

    Article  CAS  Google Scholar 

  33. R. Liang, P. Yang, and W. Mao: J. Magn. Magn. Mater., 2018, vol. 457, pp. 38–45.

    Article  CAS  Google Scholar 

  34. H.T. Jiao, Y.B. Xu, L.Z. Zhao, R.D.K. Misra, Y.C. Tang, D.J. Liu, Y. Hu, M.J. Zhao, and M.X. Shen: Acta Mater., 2020, vol. 199, pp. 311–25.

    Article  CAS  Google Scholar 

  35. M. Mehdi, Y.L. He, E.J. Hilinski, and A. Edrisy: J. Magn. Magn. Mater., 2017, vol. 429, pp. 148–60.

    Article  CAS  Google Scholar 

  36. B.Y. Huang, K. Yamamoto, C. Kaido, and Y. Yamashiro: J. Magn. Magn. Mater., 2000, vol. 209, pp. 197–200.

    Article  CAS  Google Scholar 

  37. M. Mehdi, Y.L. He, E.J. Hilinski, L.A.I. Kestens, and A. Edrisy: Acta Mater., vol. 185, pp. 540–54.

  38. K.M. Kim, H.K. Kim, J.Y. Park, J.S. Lee, S.G. Kim, N.J. Kim, and B.J. Lee: Acta Mater., 2016, vol. 106, pp. 106–16.

    Article  CAS  Google Scholar 

  39. Y. Hayakawa and M. Kurosawa: Acta Mater., 2002, vol. 50, pp. 4527–34.

    Article  CAS  Google Scholar 

  40. L. Kestens and S. Jacobs: Texture Stress Microstruct., 2008, vol. 173083, pp. 1–9.

    Article  Google Scholar 

  41. D. Hawezy and S. Birosca: Acta Mater., 2021, vol. 216, p. 117141.

    Article  CAS  Google Scholar 

  42. I. Kapoor, Y. Lan, A. Rijkenberg, Z. Li, and V. Janik: Mater. Charact., 2018, vol. 145, pp. 686–96.

    Article  CAS  Google Scholar 

  43. I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe: JOM., 2013, vol. 65, pp. 1229–36.

    Article  Google Scholar 

  44. M.Z. Quadir and B.J. Duggan: Acta Mater., 2004, vol. 52, pp. 4011–21.

    Article  CAS  Google Scholar 

  45. Y. Taneda: Jpn. J. Appl. Phys., 1965, vol. 4, p. 16.

    Article  CAS  Google Scholar 

  46. K. Jeong, S.W. Jin, S.G. Kang, J.W. Park, H.J. Jeong, S.T. Hong, S.H. Cho, M.-J. Kim, and H.N. Han: Acta Mater., 2022, vol. 232, p. 117925.

    Article  CAS  Google Scholar 

  47. W. Ye, R.L. Gall, and G. Saindrenan: Mat. Sci. Eng. A, 2002, vol. 332, pp. 41–46.

    Article  Google Scholar 

  48. J. Kohout: J. Mater. Sci., 2008, vol. 43, pp. 1334–39.

    Article  CAS  Google Scholar 

  49. Y. Lü, D.A. Molodov, and G. Gottstein: Acta Mater., 2011, vol. 59, pp. 3229–43.

    Article  Google Scholar 

  50. Y.Q. Li, W.M. Mao, and P. Yang: Trans. Mater. Heat Treat., 2011, vol. 32, pp. 55–60.

    Google Scholar 

  51. J.W. Park, H.J. Jeong, S.W. Jin, M.J. Kim, K. Lee, J.J. Kim, S.T. Hong, and H.N. Han: Mater. Char., 2017, vol. 133, pp. 70–76.

    Article  CAS  Google Scholar 

  52. S.T. Zhao, R.P. Zhang, Y. Chong, X.Q. Li, A. Abu-Odeh, E. Rothchild, D.C. Chrzan, M. Asta, J.W. Morris Jr., and A.M. Minor: Nat. Mater., 2021, vol. 20, pp. 468–72.

    Article  CAS  Google Scholar 

  53. A.F. Sprecher, S.L. Mannan, and H. Conrad: Acta Metall., 1986, vol. 34, pp. 1145–62.

    Article  CAS  Google Scholar 

  54. M. Molotskii and V. Fleurov: Phys. Rev. B, 1995, vol. 52, pp. 15829–5834.

    Article  CAS  Google Scholar 

  55. K. Okazaki, M. Kagawa, and H. Conrad: Mater. Sci. Eng., 1980, vol. 45, pp. 109–16.

    Article  CAS  Google Scholar 

  56. M.-J. Kim, S. Yoon, S. Park, H.-J. Jeong, J.-W. Park, K. Kim, J. Jo, T. Heo, S.-T. Hong, S.H. Cho, Y.-K. Kwon, I.-S. Choi, M. Kim, and H.N. Han: Appl. Mater. Today, 2020, vol. 21, p. 100874.

    Article  Google Scholar 

  57. Z. Islam, B.M. Wang, and A. Haque: Scr. Mater., 2018, vol. 144, pp. 18–21.

    Article  CAS  Google Scholar 

  58. T. Kino, T. Endo, and S. Kawata: J. Phys. Soc. Jpn., 2007, vol. 36, pp. 698–705.

    Article  Google Scholar 

  59. R.S. Qin and B.L. Zhou: Chin. J. Mater. Res., 1997, vol. 11, pp. 69–72.

    CAS  Google Scholar 

  60. S. Takajo, C.C. Merriman, S.C. Vogel, and D.P. Field: Acta Mater., 2019, vol. 166, pp. 100–12.

    Article  CAS  Google Scholar 

  61. D. Muljono, M. Ferry, and D.P. Dunne: Mater. Sci. Eng. A., 2001, vol. 303, pp. 90–99.

    Article  Google Scholar 

  62. M.C. Zhou and X.F. Zhang: J. Mater. Sci. Technol., 2022, vol. 96, pp. 126–39.

    Article  Google Scholar 

  63. N.J. Park, E.J. Lee, H.D. Joo, and J.T. Park: ISIJ Int., 2011, vol. 51, pp. 975–81.

    Article  CAS  Google Scholar 

  64. N.J. Park, H.D. Joo, and J.T. Park: ISIJ Int., 2013, vol. 53, pp. 125–30.

    Article  CAS  Google Scholar 

  65. O. Engler: Acta Mater., 1998, vol. 46, pp. 1555–68.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China (U21B2082), Beijing Municipal Natural Science Foundation (2222065), and Fundamental Research Funds for the Central Universities (FRF-TP-22-02C2).

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinfang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Qin, S., Huang, X. et al. Electrically Induced Cube ({001} < 100 >) Texture in Non-oriented Electrical Steel. Metall Mater Trans A 54, 2858–2871 (2023). https://doi.org/10.1007/s11661-023-07064-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07064-2

Navigation