Skip to main content
Log in

Eulerian–Lagrangian Numerical Simulation of Powder Bed Denudation and Spatter Behavior During Powder Bed Fusion Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Powder bed fusion using a laser beam (PBF-LB) is rapidly developing toward high laser power, high scanning speed, and multiple lasers; however, spatter has become one of the major bottlenecks limiting PBF-LB to form large metal parts. In this paper, the Eulerian–Lagrangian numerical simulation study was carried out for the spatter formation and spatter-protective gas flow coupling behavior. Among them, the Eulerian model considered the effect of particles on the gas-phase flow, and the Lagrangian model took into account the fluid drag force, gravity, buoyancy, non-uniform pressure distribution, additional mass force, and particle–particle collisions. For the effect of metal vapor on spatter and powder bed denudation, it was found that the larger the metal vapor jet speed or jet area, the faster the spatter speed and the larger the width of the powder bed denudation zone; the larger the lateral dimension of the metal vapor action zone (the scanning direction is longitudinal), the larger the number of spatters. For the effect of protective gas flow velocity on spatter movement, it was found that the longitudinal movement distance of spatter was significantly larger for larger protective gas flow velocity, and almost all spatters fell on the powder bed or substrate for smaller protective gas flow velocity. This paper is expected to provide scientific guidance for regulating PBF-LB spatter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. E.M. Sefene: Manuf. Syst., 2022, vol. 63, pp. 250–74.

    Article  Google Scholar 

  2. M.T. Andani, R. Dehghani, M.R. Karamooz-Ravari, R. Mirzaeifar, and J. Ni: Mater. Design, 2017, vol. 131, pp. 460–69.

    Article  Google Scholar 

  3. Y. Liu, Y.Q. Yang, S.Z. Mai, D. Wang, and C.H. Song: Mater. Design, 2015, vol. 87, pp. 797–806.

    Article  CAS  Google Scholar 

  4. S. Ly, A.M. Rubenchik, S.A. Khairallah, G. Guss, and M.J. Matthews: Sci. Rep., 2017, vol. 7, p. 4085.

    Article  Google Scholar 

  5. M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, and W.E. King: Acta Mater., 2016, vol. 114, pp. 33–42.

    Article  CAS  Google Scholar 

  6. D. Wang, W.H. Dou, Y.H. Ou, Y.Q. Yang, C.L. Tan, and Y.J. Zhang: J. Mater. Res. Technol., 2021, vol. 12, pp. 1051–64.

    Article  Google Scholar 

  7. L.I. Escano, N.D. Parab, L.H. Xiong, Q.L. Guo, C. Zhao, T. Sun, and L.Y. Chen: Synchrotron Radiation News, 2019, vol. 32, pp. 9–13.

    Article  Google Scholar 

  8. S.Y. Luo, X.Q. Ma, J. Xu, M.L. Li, and L.C. Cao: Sensors, 2021, vol. 21, p. 7179.

    Article  Google Scholar 

  9. M. Slodczyk, A. Ilin, T. Kiedrowski, T. Bareth, and V. Ploshikhin: Mater. Design, 2021, vol. 212, p. 110206.

    Article  Google Scholar 

  10. W.H. Zhang, H.L. Ma, Q. Zhang, and S.Q. Fan: Mater. Design, 2022, vol. 213, p. 110301.

    Article  CAS  Google Scholar 

  11. C. Pauzon, B. Hoppe, T. Pichler, S.D.-L. Goff, P. Forêt, T. Nguyen, and E. Hryha: CIRP J. Manuf. Sci. Technol., 2021, vol. 35, pp. 371–78.

    Article  Google Scholar 

  12. Z.A. Young, Q.L. Guo, N.D. Parab, C. Zhao, M.L. Qu, L.I. Escano, K. Fezzaa, W. Everhart, T. Sun, and L.Y. Chen: Addit. Manuf., 2020, vol. 36, 101438.

    CAS  Google Scholar 

  13. T. Tran-Le, J. X. Wang, M. Byron, S. Lynch, R. Kunz: Proceedings of the ASME 2021, 2021, DOI: https://doi.org/10.1115/IMECE2021-69550.

  14. M.L. Qu, Q.L. Guo, L.I. Escano, A. Nabaa, S.M.H. Hojjatzadeh, Z.A. Young, and L.Y. Chen: Nat. Commun., 2022, vol. 13, p. 1079.

    Article  CAS  Google Scholar 

  15. R. Kasper, J. Turnow, and N. Kornev: Int. J. Heat Fluid Fl., 2019, vol. 79, p. 108462.

    Article  Google Scholar 

  16. H. Chen, Y.J. Zhang, A. Giam, and W.T. Yan: Addit. Manuf., 2022, vol. 52, p. 102645.

    CAS  Google Scholar 

  17. H. Chen and W.Y. Yan: Acta Mater., 2020, vol. 196, pp. 154–67.

    Article  CAS  Google Scholar 

  18. C.-Y. Chien, T.-N. Le, Z.-H. Lin, and Y.-L. Lo: Mater. Design, 2021, vol. 210, p. 110107.

    Article  CAS  Google Scholar 

  19. T. Yu and J.D. Zhao: Comput. Method. Appl. Mater., 2021, vol. 377, p. 113707.

    Article  Google Scholar 

  20. X.B. Zhang, B. Cheng, and C. Tuffile: Addit. Manuf., 2020, vol. 32, p. 101049.

    Google Scholar 

  21. A.B. Anwar, I.H. Ibrahim, and Q.-C. Pham: Powder Technol., 2019, vol. 352, pp. 103–16.

    Article  CAS  Google Scholar 

  22. J. Jakumeit, G.Y. Zheng, R. Laqua, S.J. Clark, J. Zielinski, J.H. Schleifenbaum, and P.D. Lee: Addit. Manuf., 2021, vol. 47, p. 102332.

    CAS  Google Scholar 

  23. R. Kasper, J. Turnow, and N. Kornev: Int. J. Heat Mass Tran., 2017, vol. 115, pp. 932–45.

    Article  Google Scholar 

  24. L. Cao: Int. J. Adv. Manuf. Tech., 2019, vol. 105, pp. 2253–69.

    Article  Google Scholar 

  25. L. Cao and W. Guan: Int. J. Adv. Manuf. Technol., 2021, vol. 114, pp. 2141–57.

    Article  Google Scholar 

  26. C. Kloss, C. Goniva, A. Hager, S. Amberger, and S. Pirker: Prog. Comput. Fluid Dyn., 2012, vol. 12, pp. 140–52.

    Article  Google Scholar 

  27. C. Zhao, Q.L. Guo, X.X. Li, N. Parab, K. Fezzaa, W.D. Tan, L.Y. Chen, and T. Sun: Phys. Rev. X, 2019, vol. 9, 021052.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic and Applied Basic Research Project of Guangzhou Basic Research Program (no. 202102020724), the Natural Science Foundation of Guangdong Province (no. 2019A1515012040), and the Fast Support Project (No. 80923010304).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Meng, RF., Zhang, QD. et al. Eulerian–Lagrangian Numerical Simulation of Powder Bed Denudation and Spatter Behavior During Powder Bed Fusion Process. Metall Mater Trans A 54, 2771–2790 (2023). https://doi.org/10.1007/s11661-023-07055-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07055-3

Navigation