Skip to main content
Log in

Effect of KCl–ZnCl2 Ball-Milling Fluxing on Microstructure and Corrosion of Iron Ingot Hot-Dip Zinc Coating

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, scanning electron microscopy, differential scanning calorimetry, X-ray photoelectron spectroscopy, and electrochemical workstation were used to study the effect of KCl–ZnCl2 ball-milling fluxing on the microstructure and corrosion of iron ingot hot-dip zinc coatings. The results show that compared with the solvent fluxing (S) NH4Cl–ZnCl2 and NH4Cl–ZnCl2–FeCl2, ball-milling fluxing (BM) KCl–ZnCl2 increases the thermal decomposition temperature of the ZnCl2·H2O salt and increases the thermostability of the fluxing salt film. KCl replaces NH4Cl, avoiding the white smoke particles produced by the condensation of NH3 and HCl. There are ζ and δ layers in the coating obtained by S-(NH4Cl–ZnCl2–FeCl2). The coatings obtained by S-(NH4Cl–ZnCl2) and BM-(KCl–ZnCl2) are the same, with η, ζ, and δ layers. In electrochemical corrosion, the η layer acts as the sacrificial anode, which delays the corrosion of the ζ layer and plays the sacrificial protection for the coating. Besides, in corrosion, the corrosion products generated by the η-layer are deposited on the coating surface. These corrosion products constitute the passivation film, which hinders the further development of corrosion and plays the barrier protection for the coating.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Kania, J. Mendala, J. Kozuba, and M. Saternus: Materials, 2020, vol. 13, pp. 1–24.

    Google Scholar 

  2. Z.W. Li, H.P. Peng, Y. Liu, J.H. Wang, and X.P. Su: Trans. Indian Inst. Met., 2022, vol. 75, pp. 397–406.

    Article  CAS  Google Scholar 

  3. S. Peng, S.K. Xie, J.T. Lu, and L.C. Zhang: J. Alloys Compd., 2017, vol. 728, pp. 1002–008.

    Article  CAS  Google Scholar 

  4. Z.W. Li, H.P. Peng, Y. Liu, S.P. Su, S. Kawi, and J.H. Wang: J. Mater. Res. Technol., 2022, vol. 16, pp. 1402–412.

    Article  CAS  Google Scholar 

  5. T.A. Pozdniakova, L.P. Mazur, R.A.R. Boaventyra, and V.J.P. Vilar: J. Clean. Prod., 2016, vol. 119, pp. 38–49.

    Article  CAS  Google Scholar 

  6. M. Manna, G. Naidu, N. Rani, and N. Bandyopadhyay: Surf. Coat. Technol., 2008, vol. 202, pp. 1510–516.

    Article  CAS  Google Scholar 

  7. T. Bellezze, S. Saltykov, G. Roventi, M. Malavolta, and R. Fratesi: Surf. Coat. Technol., 2012, vol. 206, pp. 5023–027.

    Article  CAS  Google Scholar 

  8. R. Friess: Z. Anorg. Chem., 1903, vol. 206, pp. 3083–087.

    Google Scholar 

  9. N. Pistofidis, G. Vourlias, S. Konidaris, E. Pavlidou, G. Stergioudis, and D. Tsipas: Cryst. Res. Technol., 2006, vol. 41, pp. 759–65.

    Article  CAS  Google Scholar 

  10. S. Kahar, H. Panchal, and R. Patel: Int. J. Adv. Eng. Res. Dev., 2014, vol. 1, pp. 30–6.

    Google Scholar 

  11. W. Wołczynski, Z. Pogoda, G. Garzel, B. Kucharska, A. Sypien, and T. Okane: Arch. Metall. Mater., 2014, vol. 59, pp. 1393–404.

    Article  Google Scholar 

  12. B.D. Deshmukh and A.P. Patil: Int. J. Emerg. Technol. Adv. Eng., 2012, vol. 2, pp. 71–5.

    Google Scholar 

  13. S. Roy, Y. Liu, M. Topsakal, E. Dias, R. Gakhar, W.C. Phillips, J.F. Wishart, and D. Leshchev: J. Am. Chem. Soc., 2021, vol. 143, pp. 15298–5308.

    Article  CAS  Google Scholar 

  14. A.M.P. Simoes, R.O. Carbonari, A.R. Sarli, B.D. Amo, and R. Romagnoli: Corros. Sci., 2011, vol. 53, pp. 464–72.

    Article  CAS  Google Scholar 

  15. J. Wang, Y.Y. Zhang, K.K. Cui, T. Fu, J.J. Gao, and S.H. Hussain: J. Clean. Prod., 2021, vol. 298, 126788.

    Article  CAS  Google Scholar 

  16. Y. Boonyongmaneerate, K. Saenkiettiyut, P. Rattanawaleedirojn, C. Angkaprasert, J. Wanichsapan, and S. Saenapitak: J. Iron Steel Res. Int., 2010, vol. 17, pp. 74–8.

    Article  Google Scholar 

  17. T. Liu, R. Ma, Y.Z. Fan, A. Du, X. Zhao, M. Wen, and X.M. Cao: Surf. Coat. Technol., 2018, vol. 337, pp. 270–78.

    Article  CAS  Google Scholar 

  18. J.D. Hernández-Betancur, H.F. Hernandez, and L.M. Ocampo-Carmona: J. Clean. Prod., 2019, vol. 206, pp. 755–66.

    Article  Google Scholar 

  19. R.E. Elewa, S.A. Afolalu, and O.S.I. Fayomi: International Conference on Engineering for Sustainable World, 2019, vol. 1378, pp. 022071.

  20. G. Kong and R. White: J. Clean. Prod., 2010, vol. 18, pp. 1092–099.

    Article  CAS  Google Scholar 

  21. B.B. Zhang, W.C. Xu, Q.J. Zhu, and B.R. Hou: J. Mater. Sci. Technol., 2021, vol. 66, pp. 74–81.

    Article  CAS  Google Scholar 

  22. T.J. Pan, W.M. Lu, Y.J. Ren, and W.T. Wu: Oxid. Met., 2009, vol. 72, pp. 179–90.

    Article  CAS  Google Scholar 

  23. A. Ul-Hamid: Cham, 2018. ISBN 978-3-319-98482-7.

  24. G.W.H. Höhne, W.F. Hemminger, and H.J. Flammersheim: Applications of Differential Scanning Calorimetry, Springer, Berlin, 2003, pp. 147–244.

    Book  Google Scholar 

  25. A.P. Yadav, H. Katayama, K. Noda, H. Masuda, A. Nishikata, and T. Tsuru: Corros. Sci., 2007, vol. 49, pp. 3716–731.

    Article  CAS  Google Scholar 

  26. A.R. Marder: Prog. Mater. Sci., 2000, vol. 45, pp. 191–271.

    Article  CAS  Google Scholar 

  27. C.J. Li, P.W. Li, K. Wang, and E.E. Molina: AIMS Energy, 2014, vol. 2, pp. 133–57.

    Article  Google Scholar 

  28. S. Niazi, E. Olsen, and H.S. Nygard: J. Mol. Liq., 2020, vol. 317, 114069.

    Article  CAS  Google Scholar 

  29. Z. Yu, J.M. Hu, and H.M. Meng: Front. Mater., 2020, vol. 7, pp. 1–7.

    Article  Google Scholar 

  30. P.C.J. Graat and M.A.J. Somers: Appl. Surf. Sci., 1996, vol. 101, pp. 36–40.

    Article  Google Scholar 

  31. X.L. Shang, B. Zhang, E.H. Han, and W. Ke: Electrochim. Acta, 2011, vol. 56, pp. 1417–425.

    Article  CAS  Google Scholar 

  32. P. Kaspar, D. Sobola, R. Dallaev, S. Ramazanov, A. Nebojsa, S. Rezaee, and L. Grmela: Appl. Surf. Sci., 2019, vol. 493, pp. 673–78.

    Article  CAS  Google Scholar 

  33. P. Ghods, O.B. Isgor, J.R. Brown, F. Bensebaa, and D. Kingston: Appl. Surf. Sci., 2011, vol. 257, pp. 4669–677.

    Article  CAS  Google Scholar 

  34. E. Diler, B. Lescop, S. Rioual, G. Nguyen, D. Thierry, and B. Rouvelou: Corros. Sci., 2014, vol. 79, pp. 83–8.

    Article  CAS  Google Scholar 

  35. X. Zhang, C. Leygraf, and L.O. Wallinder: Corros. Sci., 2013, vol. 73, pp. 62–71.

    Article  CAS  Google Scholar 

  36. Z.H. Wang, C.T. Chen, J.C. Liu, G. Zhang, and K. Suganuma: Corros. Sci., 2018, vol. 140, pp. 40–50.

    Article  CAS  Google Scholar 

  37. T.M.C. Nogueira, U.R. Seixas, and P.R. Rios: ISIJ Int., 1998, vol. 38, pp. 775–77.

    Article  CAS  Google Scholar 

  38. H. Zhang, M.S. Yuan, N.M. Wen, and G.P. Cheng: Corros. Prot., 2002, vol. 23, pp. 436–40.

    Google Scholar 

  39. A. Besseyrias, F. Dalard, J.J. Rameau, and H. Baudin: Corros. Sci., 1995, vol. 37, pp. 587–95.

    Article  CAS  Google Scholar 

  40. M.S. Oh, S.H. Kim, J.S. Kim, J.W. Lee, J.H. Shon, and Y.S. Jin: Met. Mater. Int., 2016, vol. 22, pp. 26–33.

    Article  CAS  Google Scholar 

  41. J.W. Lee, B.R. Park, S.Y. Oh, D.W. Yun, J.K. Hawang, and M.S. Oh: Corros. Sci., 2019, vol. 160, 108170.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Nature Science Foundation of China (Grant Nos. 51871030 and 51971039), and a project funded by Jiangsu Province Postgraduate Research and Practice Innovation (KYCX21-2800).

Conflict of interest

The authors report no declarations of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Peng, H., Xie, A. et al. Effect of KCl–ZnCl2 Ball-Milling Fluxing on Microstructure and Corrosion of Iron Ingot Hot-Dip Zinc Coating. Metall Mater Trans A 54, 2744–2758 (2023). https://doi.org/10.1007/s11661-023-07051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07051-7

Navigation