Skip to main content
Log in

Misorientation Development at Σ3 Boundaries in Pure Copper: Experiments and MD Simulations

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

During deformation of bulk polycrystalline materials, misorientation develops due to plastic deformation within grains and additionally due to mismatch in the deformation of adjacent grains across grain boundaries. We have carried out incremental deformation of pure copper and studied misorientation development (Kernel Average Misorientation, KAM) near specific boundaries as a function of strain based on Electron Backscatter Diffraction (EBSD) measurements. To analyse misorientation variation within grains and near boundaries, we propose a novel method, section partitioning, which gives more representative measurements of misorientation as a function of distance from grain boundary. We find three kinds of behaviour near boundaries in terms of KAM: (i) lower than, (ii) intermediate between and (iii) higher than in-grain sections on either side of boundary. We also show that Grain Reference Orientation Deviation shows the best correlation with changes in the boundary character that occur as a result of deformation. Further we have performed molecular dynamics (MD) simulations of deformation of twinned crystals of copper. These results are used to qualitatively understand the misorientation development that we see in deformed samples. Our results highlight that similar Σ3 boundaries could show differences in misorientation development after deformation—and these are related to variations in dislocation boundary interactions. These results suggest that models for polycrystal deformation must incorporate such heterogeneous behaviour of boundaries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Konopka, J. Mizera, and J.W. Wyrzykowski: J. Mater. Process. Technol., 2000, vol. 99, pp. 255–59.

    Article  Google Scholar 

  2. X. Zhang, A. Mishra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland, and J.P. Hirth: Appl. Phys. Lett., 2004, vol. 84, pp. 1096–98.

    Article  CAS  Google Scholar 

  3. Y.G. Zheng, J. Lu, H.W. Zhang, and Z. Chen: Scr. Mater., 2009, vol. 60, pp. 508–11.

    Article  CAS  Google Scholar 

  4. A.J. Cao, Y.G. Wei, and S.X. Mao: Appl. Phys. Lett., 2007, vol. 90, pp. 1–4.

    Google Scholar 

  5. K.A. Afanasyev and F. Sansoz: Nano. Lett., 2007, vol. 7, pp. 2056–62.

    Article  CAS  Google Scholar 

  6. Y.B. Wang, B. Wu, and M.L. Sui: Appl. Phys. Lett., 2008, vol. 93, pp. 1–4.

    Google Scholar 

  7. W.A.T. Clark, C.E. Wise, Z. Shen, and R.H. Wagoner: Ultramicroscopy, 1989, vol. 30, pp. 76–89.

    Article  Google Scholar 

  8. J. Kacher, B.P. Eftink, B. Cui, and I.M. Robertson: Curr. Opin. Solid State Mater. Sci., 2014, vol. 18, pp. 227–43.

    Article  CAS  Google Scholar 

  9. T. Malis and K. Tangri: Acta Metall., 1979, vol. 27, pp. 25–32.

    Article  CAS  Google Scholar 

  10. J. Jiang, T.B. Britton, and A.J. Wilkinson: Acta Mater., 2013, vol. 61, pp. 7227–39.

    Article  CAS  Google Scholar 

  11. J. Jiang, T.B. Britton, and A.J. Wilkinson: Philos. Mag. Lett., 2012, vol. 92, pp. 580–88.

    Article  CAS  Google Scholar 

  12. R.K. Davies and V. Randle: Mater. Sci. Eng. A, 2000, vol. 283, pp. 251–65.

    Article  Google Scholar 

  13. M. Kamaya, J.Q. da Fonseca, L.M. Li, and M. Preuss: Appl. Mech. Mater., 2007, vol. 7, pp. 173–79.

    Article  Google Scholar 

  14. S. Subedi, R. Pokharel, and A.D. Rollett: Mater. Sci. Eng. A, 2015, vol. 638, pp. 348–56.

    Article  CAS  Google Scholar 

  15. S. Scheriau and R. Pippan: Mater. Sci. Eng. A, 2008, vol. 493, pp. 48–52.

    Article  Google Scholar 

  16. A.K. Veneva, M.R. Koblischka, X.L. Zeng, J. Schmauch, and U. Hartmann: J. Phys., 2018, vol. 1054, pp. 1–8.

    Google Scholar 

  17. B. Wu, A. Heidelberg, and J.J. Boland: Nat. Mater., 2005, vol. 4, pp. 525–29.

    Article  CAS  Google Scholar 

  18. A. Cao, Y. Wei, and E. Ma: Phys. Rev. B, 2008, vol. 77, pp. 1–8.

    Google Scholar 

  19. H.D. Espinosa, B.C. Prorok, and B. Peng: J. Mech. Phys. Solids, 2004, vol. 52, pp. 667–89.

    Article  CAS  Google Scholar 

  20. G. Dehm, T.J. Balk, H. Edongué, and E. Arzt: Microelectron. Eng., 2003, vol. 70, pp. 412–24.

    Article  CAS  Google Scholar 

  21. L. Nicola, Y. Xiang, J.J. Vlassak, E. van der Giessen, and A. Needleman: J. Mech. Phys. Solids, 2006, vol. 54, pp. 2089–110.

    Article  Google Scholar 

  22. P.J. Imrich, C. Kirchlechner, C. Motz, and G. Dehm: Acta Mater., 2014, vol. 73, pp. 240–50.

    Article  CAS  Google Scholar 

  23. N.K. Aragon, J.D. Gravell, and I. Ryu: Acta Mater., 2022, vol. 223, pp. 1–21.

    Article  Google Scholar 

  24. P.J. Imrich, C. Kirchlechner, and G. Dehm: Mater. Sci. Eng. A, 2015, vol. 642, pp. 65–70.

    Article  CAS  Google Scholar 

  25. N. Kheradmand, H. Vehoff, and A. Barnoush: Acta Mater., 2013, vol. 61, pp. 7454–65.

    Article  CAS  Google Scholar 

  26. S. Zaefferer, J. Kuo, Z. Zhao, M. Winning, and D. Raabe: Acta Mater., 2003, vol. 51, pp. 4719–35.

    Article  CAS  Google Scholar 

  27. N.A. Bonasso, F. Wagner, S. Berbenni, and D.P. Field: Mater. Sci. Eng. A, 2012, vol. 548, pp. 56–63.

    Article  Google Scholar 

  28. X. Zhao, C. Lu, A.K. Tieu, L. Pie, L. Zhang, L. Su, and L. Zhan: Mater. Sci. Eng. A, 2017, vol. 687, pp. 343–51.

    Article  CAS  Google Scholar 

  29. X.X. Zhao, J. Wu, Y.L. Chiu, I.P. Jones, R. Gu, and A.H.W. Ngan: Scr. Mater., 2019, vol. 163, pp. 137–41.

    Article  CAS  Google Scholar 

  30. C. Howard, D. Frazer, A. Lupinacci, S. Parker, R.Z. Valiev, C. Shin, B.W. Choi, and P. Hosemann: Mater. Sci. Eng. A, 2016, vol. 649, pp. 104–13.

    Article  CAS  Google Scholar 

  31. L.L. Li, Z.J. Zhang, J. Tan, C.B. Jiang, R.T. Qu, P. Zhang, J.B. Yang, and Z.F. Zhang: Sci. Rep., 2015, vol. 5, pp. 1–8.

    Google Scholar 

  32. J. Guo, S. Amira, P. Gougeon, and X.G. Chen: Mater. Charact., 2011, vol. 62, pp. 865–77.

    Article  CAS  Google Scholar 

  33. V. Randle, N. Hansen, and D.J. Jensen: Philos. Mag. A, 1996, vol. 73, pp. 265–82.

    Article  CAS  Google Scholar 

  34. N.I. Thiruselvam, R. Jeyaraam, S.J. Subramanian, and S. Sankaran: Materials, 2021, vol. 18, pp. 1–8.

    Google Scholar 

  35. I. Ryu, W.D. Nix, and W. Cai: Acta. Mater., 2013, vol. 61, pp. 3233–41.

    Article  CAS  Google Scholar 

  36. M.M. Nowell and S.I. Wright: Ultramicroscopy, 2005, vol. 103, pp. 41–58.

    Article  CAS  Google Scholar 

  37. N.P. Kryuchkov, S.O. Yurchenko, Y.D. Fomin, E.N. Tsiok, and V.N. Ryzhov: Soft Matter, 2018, vol. 14, pp. 2152–62.

    Article  CAS  Google Scholar 

  38. A. Stukowski: Model. Simul Mat. Sci. Eng., 2010, vol. 18, pp. 1–8.

    Google Scholar 

  39. L. Ward, A. Agrawal, K. M. Flores, and W. Windl: arXiv:1209.0619, 2012, pp. 1–26.

  40. G. Kamalakshi, P. Pant, and M.P. Gururajan: Comput. Mater. Sci., 2022, vol. 203, pp. 1–1.

    Article  Google Scholar 

  41. M.N. Gussev and K.J. Leonard: J. Nucl. Mater., 2019, vol. 517, pp. 45–56.

    Article  CAS  Google Scholar 

  42. C. Schayes, J. Bouquerel, J.B. Vogt, F. Palleschi, and S. Zaefferer: Mater. Charact., 2016, vol. 115, pp. 61–70.

    Article  CAS  Google Scholar 

  43. S.I. Wright, S. Suzuki, and M.M. Nowell: JOM, 2016, vol. 68, pp. 2730–36.

    Article  Google Scholar 

  44. K. Fujiyama, K. Mori, D. Kaneko, H. Kimachi, T. Saito, R. Ishii, and T. Hino: Int. J. Pres. Ves. Pip., 2009, vol. 86, pp. 570–7.

    Article  CAS  Google Scholar 

  45. L. Hua, X. Hu, and X. Han: Mater. Des., 2020, vol. 196, pp. 1–26.

    Article  Google Scholar 

  46. J. Wang, G. Chen, S. Huang, H. Zhang, Q. Chen, C. Zhang, and Z. Du: Int. J. Mech. Sci., 2022, vol. 218, pp. 1–2.

    Article  Google Scholar 

  47. Z. Li, Y.C. Lin, L. Zhang, J. Zheng, J. Zhao, R. Wang, and Z. Jiang: Int. J. Mech. Sci., 2022, vol. 231, pp. 1–1.

    Google Scholar 

  48. S.V. Boxel, M. Seefeldt, B. Verlinden, and P.V. Houtte: Mater. Sci. Forum, 2005, vol. 495, pp. 1025–30.

    Article  Google Scholar 

  49. Y. Wadamori, K. Hirayama, H. Fujiwara, T. Uenoya, and H. Miyamoto: J. Jpn. I. Met. Mater., 2013, vol. 77, pp. 348–52.

    CAS  Google Scholar 

  50. Y. Takayama and J.A. Szpunar: Mater. Trans., 2004, vol. 45, pp. 2316–25.

    Article  CAS  Google Scholar 

  51. S.I. Wright, M.M. Nowell, and D.P. Field: Microsc. Microanal., 2011, vol. 17, pp. 316–29.

    Article  CAS  Google Scholar 

  52. A. Kundu, D.P. Field, and P.C. Chakraborti: Mater. Sci. Eng. A, 2020, vol. 773, pp. 2–11.

    Article  Google Scholar 

  53. D.N. Githinji, S.M. Northover, P.J. Bouchard, and M.A. Rist: Metall. Mater. Trans. A, 2013, vol. 44, pp. 4150–67.

    Article  CAS  Google Scholar 

  54. Y. Kim, P.A. Rad, J. Lee, G.H. Gu, M. Jang, O. Bouaziz, Y. Estrin, H. Kato, and H.S. Kim: Mater. Sci. Eng. A, 2022, vol. 835, pp. 1–6.

    Google Scholar 

  55. M. Kamaya: Mater. Charact., 2012, vol. 66, pp. 56–67.

    Article  CAS  Google Scholar 

  56. M. Kamaya, K. Kubushiro, Y. Sakakibara, S. Suzuki, H. Morita, R. Yoda, D. Kobayashi, K. Yamagiwa, T. Nishiyoka, Y. Yamazaki, Y. Kamada, T. Hanada, and T. Ohtani: Mech. Eng. J., 2016, vol. 3, pp. 1–5.

    CAS  Google Scholar 

  57. A. Ma, F. Roters, and D. Raabe: Acta Mater., 2006, vol. 54, pp. 2181–94.

    Article  CAS  Google Scholar 

  58. A. Ma, F. Roters, and D. Raabe: Int. J. Solids Struct., 2006, vol. 43(24), pp. 7287–303.

    Article  Google Scholar 

  59. N. Pai, A. Prakash, I. Samajdar, and A. Patra: Int. J. Plast., 2022, vol. 156, 103360.

    Article  CAS  Google Scholar 

  60. Z. Shen, R.H. Wagoner, and W.A.T. Clark: Scr. Metall., 1986, vol. 20, pp. 921–26.

    Article  CAS  Google Scholar 

  61. M. Chassagne, M. Legros, and D. Rodney: Acta Mater., 2011, vol. 59, pp. 1456–63.

    Article  CAS  Google Scholar 

  62. C.M. Kuo and C.S. Lin: Scr. Mater., 2007, vol. 57, pp. 667–70.

    Article  CAS  Google Scholar 

  63. A. Rohatgi, K.S. Vecchio, and G.T. Gray: Metall. Mater. Trans. A, 2001, vol. 32, pp. 135–45.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Department of Science and Technology (DST), Government of India for funding this study through projects 14DST017, CRG/2019/005060. The authors would like to acknowledge FIST lab facility, National Facility of Texture & OIM and high performance computing facilities at IIT Bombay for carrying out experimental and simulations work.

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prita Pant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5280 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Kamalakshi, G., Gururajan, M.P. et al. Misorientation Development at Σ3 Boundaries in Pure Copper: Experiments and MD Simulations. Metall Mater Trans A 54, 2656–2669 (2023). https://doi.org/10.1007/s11661-023-07045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07045-5

Navigation