Skip to main content
Log in

Effects of Magnetic Field on Microstructure, Phase Transformation and Ferrite Growth in Directionally Solidified Gray Cast Iron

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Advanced technologies and methods used in artificially tailoring the microstructure of Fe–C-based alloy hold the brilliant application prospect. Here, we demonstrate that the high magnetic field can decrease the flake graphite spacing, induce the disappearance of primary graphite, increase the eutectoid ferrite nucleation sites, and enhance the grain size distribution homogeneity of the eutectoid ferrite in the directionally solidified gray cast iron. These phenomena are mainly attributed to the magnetization behavior of the diffusion boundary layer and the different magnetizations between austenite and ferrite under the application of the magnetic field. Due to the magnetization of the diffusion boundary layer, the diffusion of C atoms is hindered, thus resulting in a decreased graphite spacing. The enhancement of the eutectoid ferrite nucleation is stemming from an increased eutectoid transformation temperature and the reduction of incubation time for the eutectoid transformation under the magnetic field. Further, the increased eutectoid transformation temperature also endows the decreased amount of the deformed ferrite grains and an amplified growth temperature range for ferrite, then the frequency of the low-angle misorientations reduces and that of the low-mobility CSL boundaries increases. In addition, because of the interaction among magnetic dipoles and the magnetocrystalline anisotropy, ferrite grains and graphite tend to align along the magnetic field direction. The current work is a successful demonstration of using the high magnetic field to tailor the solidification microstructure of gray cast iron, and paves a way for the development of the high-performance gray cast iron for industrial applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Yasuda, K. Morishita, N. Nakatsuka, T. Nishimura, M. Yoshiya, A. Sugiyama, K. Uesugi, and A. Takeuchi: Nat. Commun., 2019, vol. 10, p. 3183.

    Article  Google Scholar 

  2. M. Gouné, F. Danoix, J. Ågren, Y. Bréchet, C.R. Hutchinson, M. Militzer, G. Purdy, S. Van Der Zwaag, and H. Zurob: Mat. Sci. Eng. R, 2015, vol. 92, pp. 1–38.

    Article  Google Scholar 

  3. Y.C. Liu, D.J. Wang, F. Sommer, and E.J. Mittemeijer: Acta Mater., 2008, vol. 56, pp. 3833–842.

    Article  CAS  Google Scholar 

  4. M. Trepczyńska-Łent, D. Boroński, and P. Maćkowiak: Mater. Sci. Eng. A, 2021, vol. 822, 141644.

    Article  Google Scholar 

  5. D.M. Stefanescu, G. Alonso, P. Larrañaga, E. De La Fuente, and R. Suarez: Int. J. Metalcast., 2018, vol. 12, pp. 722–52.

    Article  CAS  Google Scholar 

  6. U. Tewary, D. Paul, H.K. Mehtani, S. Bhagavath, A. Alankar, G. Mohapatra, S.S. Sahay, A.S. Panwar, S. Karagadde, and I. Samajdar: Acta Mater., 2022, vol. 226, 117660.

    Article  CAS  Google Scholar 

  7. S.B. Wang, A.A. Kistanov, G. King, S. Ghosh, H. Singh, S. Pallaspuro, A. Rahemtulla, M. Somani, J. Kömi, W. Cao, and M. Huttula: Acta Mater., 2021, vol. 221, 117361.

    Article  CAS  Google Scholar 

  8. D. Janicki, J. Górka, W. Kwaśny, W. Pakieła, and K. Matus: Materials, 2020, vol. 13, p. 1174.

    Article  CAS  Google Scholar 

  9. L. Morsdorf, E. Emelina, B. Gault, M. Herbig, and C.C. Tasan: Acta Mater., 2021, vol. 205, 116521.

    Article  CAS  Google Scholar 

  10. H.T. Zhao and E.J. Palmiere: Mater. Charact., 2019, vol. 158, 109990.

    Article  CAS  Google Scholar 

  11. J.R. Gao, M.K. Han, A. Kao, K. Pericleous, D.V. Alexandrov, and P.K. Galenko: Acta Mater., 2016, vol. 103, pp. 184–91.

    Article  CAS  Google Scholar 

  12. P.F. Jiang, J.T. Wang, L. Hou, Y. Fautrelle, and X. Li: J. Mater. Sci. Technol., 2020, vol. 50, pp. 86–91.

    Article  CAS  Google Scholar 

  13. Z.Y. Lu, Y. Fautrelle, Z.M. Ren, and X. Li: Sci. Rep., 2018, vol. 8, p. 10641.

    Article  Google Scholar 

  14. Y. Watanabe, R. Kobayashi, Y. Mitsui, R.Y. Umetsu, and K. Koyama: J. Alloys Compd., 2021, vol. 887, 161310.

    Article  CAS  Google Scholar 

  15. C.S. Lou, T. Liu, M. Dong, C. Wu, J.G. Shao, and Q. Wang: J. Magn. Magn. Mater., 2017, vol. 424, pp. 365–70.

    Article  CAS  Google Scholar 

  16. M. Veligatla, C. Titsch, W.G. Drossel, C.J. Garcia-Cervera, and P. Müllner: Acta Mater., 2020, vol. 186, pp. 389–95.

    Article  CAS  Google Scholar 

  17. D.E. Laughlin: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 2555–569.

    Article  Google Scholar 

  18. Y.P. Zeng, T. Mittnacht, W. Werner, Y. Du, D. Schneider, and B. Nestler: Acta Mater., 2022, vol. 225, 117595.

    Article  CAS  Google Scholar 

  19. T. Kakeshita, T. Saburi, K. Kindo, and S. Endo: Jpn. J. Appl. Phys., 1997, vol. 36, p. 7083.

    Article  CAS  Google Scholar 

  20. T. Kakeshita, K. Shimizu, S. Funada, and M. Date: Acta Metall., 1985, vol. 33, pp. 1381–389.

    Article  CAS  Google Scholar 

  21. V.M. Schastlivtsev, Y.V. Kaletina, E.A. Fokina, and D.A. Mirzaev: Met. Sci. Heat Treat., 2016, vol. 58, pp. 247–53.

    Article  CAS  Google Scholar 

  22. H. Ohtsuka: Sci. Technol. Adv. Mater., 2008, vol. 9, 013004.

    Article  Google Scholar 

  23. M. Enomoto, G.H. Zhang, and K.M. Wu: Solid State Phenom., 2011, vol. 172–174, pp. 362–71.

    Article  Google Scholar 

  24. X.J. Hao and H. Ohtsuka: Mater. Trans., 2004, vol. 45, pp. 2622–625.

    Article  CAS  Google Scholar 

  25. S. Rivoirard, F. Gaucherand, E. Beaugnon, O. Bouaziz, and E. Pinto Da Costa: Metall. Res. Technol., 2005, vol. 102, pp. 393–97.

    CAS  Google Scholar 

  26. Y. Mitsui, Y. Ikehara, K. Takahashi, S. Kimura, G. Miyamoto, T. Furuhara, K. Watanabe, and K. Koyama: J. Alloys Compd., 2015, vol. 632, pp. 251–55.

    Article  CAS  Google Scholar 

  27. T. Kakeshita and T. Fukuda: J. Phys., 2009, vol. 156, 012012.

    Google Scholar 

  28. T. Koyama and H. Onodera: ISIJ Int., 2006, vol. 46, pp. 1277–282.

    Article  CAS  Google Scholar 

  29. G.M. Ludtka, R.A. Jaramillo, R.A. Kisner, D.M. Nicholson, J.B. Wilgen, G. Mackiewicz-Ludtka, and P.N. Kalu: Scripta Mater., 2004, vol. 51, pp. 171–74.

    Article  CAS  Google Scholar 

  30. T. Garcin, S. Rivoirard, C. Elgoyhen, and E. Beaugnon: Acta Mater., 2010, vol. 58, pp. 2026–032.

    Article  CAS  Google Scholar 

  31. J.J. Li and W. Liu: J. Magn. Magn. Mater., 2014, vol. 362, pp. 159–64.

    Article  CAS  Google Scholar 

  32. A.M. Elwazri, P. Wanjara, and S. Yue: Mater. Sci. Technol., 2004, vol. 20, pp. 1469–473.

    Article  CAS  Google Scholar 

  33. X. Li, Z.M. Ren, and Y. Fautrelle: Acta Mater., 2006, vol. 54, pp. 5349–360.

    Article  CAS  Google Scholar 

  34. Z.P. Long, J.T. Wang, Y. Fautrelle, and X. Li: J. Alloys Compd., 2020, vol. 831, 154746.

    Article  CAS  Google Scholar 

  35. X. Li, Y. Fautrelle, Z.M. Ren, Y.D. Zhang, and C. Esling: Acta Mater., 2010, vol. 58, pp. 2430–441.

    Article  CAS  Google Scholar 

  36. K.A. Jackson and J.D. Hunt: Trans. Metal. Soc. AIME, 1966, vol. 236, p. 1129.

    CAS  Google Scholar 

  37. M. Shimotomai, K. Maruta, K. Mine, and M. Matsui: Acta Mater., 2003, vol. 51, pp. 2921–932.

    Article  CAS  Google Scholar 

  38. Y.D. Zhang, C.S. He, X. Zhao, L. Zuo, and C. Esling: J. Magn. Magn. Mater., 2005, vol. 294, pp. 267–72.

    Article  CAS  Google Scholar 

  39. K.C. Russell: Adv. Colloid Interface Sci., 1980, vol. 3–4, pp. 205–318.

    Article  Google Scholar 

  40. H.B. Chang, Z.G. Li, T.Y. Hsu, Z.Y. Xu, and X.Y. Ruan: Acta Metall. Sin.-Engl., 1988, vol. 11, pp. 207–14.

    Google Scholar 

  41. Y.D. Zhang, C.S. He, X. Zhao, C. Esling, and L. Zuo: Adv. Eng. Mater., 2004, vol. 5, pp. 310–13.

    Article  Google Scholar 

  42. R. Backofen, K.R. Elder, and A. Voigt: Phys. Rev. Lett., 2019, vol. 122, 126103.

    Article  CAS  Google Scholar 

  43. C.M.B. Bacaltchuk, G.A. Castello-Branco, M. Ebrahimi, H. Garmestani, and A.D. Rollett: Scripta Mater., 2003, vol. 48, pp. 1343–347.

    Article  CAS  Google Scholar 

  44. Y.D. Zhang, G. Vincent, N. Dewobroto, L. Germain, X. Zhao, L. Zuo, and C. Esling: J. Mater. Sci., 2005, vol. 40, pp. 903–08.

    Article  CAS  Google Scholar 

  45. S. Kobayashi, R. Kobayashi, and T. Watanabe: Acta Mater., 2016, vol. 102, pp. 309–405.

    Article  Google Scholar 

  46. T. Watanabe: Res. Mech., 1984, vol. 11, pp. 47–84.

    CAS  Google Scholar 

  47. Y.D. Zhang, C. Esling, J.S. Lecomte, C.S. He, X. Zhao, and L. Zuo: Acta Mater., 2005, vol. 53, pp. 5213–221.

    Article  CAS  Google Scholar 

  48. D.M. Stefanescu, G. Alonso, P. Larrañaga, E. De La Fuente, and R. Suarez: Acta Mater., 2016, vol. 107, pp. 102–26.

    Article  CAS  Google Scholar 

  49. K.S. Krishnan and N. Ganguli: Nature, 1937, vol. 139, pp. 155–56.

    Article  CAS  Google Scholar 

  50. M.G. Sung, K. Hattori, and S. Asai: Mater. Des., 2009, vol. 30, pp. 387–90.

    Article  CAS  Google Scholar 

  51. D.S. Kang, S.K. Seo, J.H. Kim, U.Y. Eom, and J.S. Roh: Res. Chem. Interned., 2014, vol. 40, pp. 2439–446.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 51904183, 51690164, and 52130204) and Shanghai Science and Technology Committee Grant (19XD1401600 and 19010500300);

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Long, Z., Jiang, Q. et al. Effects of Magnetic Field on Microstructure, Phase Transformation and Ferrite Growth in Directionally Solidified Gray Cast Iron. Metall Mater Trans A 54, 2631–2644 (2023). https://doi.org/10.1007/s11661-023-07042-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07042-8

Navigation