Skip to main content

Advertisement

Log in

Microwave-Assisted Combustion Synthesis of Ni–Cr–Mo Superalloy Using Mixed Oxides: Mechanism and Thermodynamics Aspects

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ni23Cr18Mo superalloy is synthesized via microwave-assisted alumino-silicothermic reduction. Mixed powders of NiO, Cr2O3, MoO3, and different ratios of Al and Si are employed as the reactants. The thermodynamical considerations and chemical and microstructural characterization of the synthesized alloys were studied by Factsage™ software, induction coupled plasma, scanning electron microscopy equipped with energy-dispersive spectrometer, and X-ray diffraction. Thermodynamical calculations suggested that all the samples could be synthesized via combustion synthesis. Accordingly, the priority of the reduction of elements is Ni, Mo, and Cr, respectively. Results indicated that the NiCr2O4 complex is formed during the synthesis. The low activities of Ni and Cr in this compound have a negative effect on the recovery efficiency of these elements. Moreover, the lower recovery efficiency of Ni relative to Mo can be attributed to the lower melting point of MoO3 than NiO. However, results show that in the specimens with a reduction share of Al less than 20 pct, the synthesis does not occur due to the high-melting point and low-solid-state reactivity of Si. It was found that there is a dependency between Cr recovery and the presence of Al. With increasing the reduction share of Al from 40 to 100 pct, the recovery efficiency of Cr is enhanced by 3.3 times. Furthermore, excess Al significantly affects the recovery efficiency of Cr. However, adding excess Al to the precursors increases residual Si in the final alloy and encourages the formation of the Mo2Ni3Si intermetallic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I. Hemmati, V. Ocelík, and JTh.M. De Hosson: Phys. Procedia., 2013, vol. 41, pp. 302–11. https://doi.org/10.1016/j.phpro.2013.03.082.

    Article  CAS  Google Scholar 

  2. P. Clook, NACE International, Denver, Colorado, 1996, NACE-96412,

  3. C. Zheng, Z. Liu, Q. Liu, Y. Kong, and C. Liu: Coatings, 2022, vol. 12, pp. 421–40. https://doi.org/10.3390/coatings12040421.

    Article  CAS  Google Scholar 

  4. A. Mishra: Acta Metall. Sin., 2017, vol. 30, pp. 306–18. https://doi.org/10.1007/s40195-017-0538-y.

    Article  CAS  Google Scholar 

  5. A.K. Mishra and D.W. Shoesmith: Corrosion, 2014, vol. 70, pp. 721–30.

    Article  CAS  Google Scholar 

  6. P. Jakupi, F. Wang, J.J. Noel, and D.W. Shoesmith: Corros. Sci., 2011, vol. 53, pp. 1670–679. https://doi.org/10.1016/j.corsci.2011.01.028.

    Article  CAS  Google Scholar 

  7. R. Rosa, P. Veronesi, and C. Leonelli: Chem. Eng. Process., 2013, vol. 71, pp. 2–18. https://doi.org/10.1016/j.cep.2013.02.007.

    Article  CAS  Google Scholar 

  8. A. Varma and J.P. Lebrat: Chem. Eng. Sci., 1992, vol. 47, pp. 2179–194. https://doi.org/10.1016/0009-2509(92)87034-N.

    Article  CAS  Google Scholar 

  9. K. Morsi: J. Mater. Sci., 2012, vol. 47, pp. 68–92. https://doi.org/10.1007/s10853-011-5926-5.

    Article  CAS  Google Scholar 

  10. K.C. Patil, M.S. Hegde, T. Rattan, and S.T. Aruna: Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis Properties and Applications, World Scientific, Singapore, 2008.

    Book  Google Scholar 

  11. A.S. Mukasyan, C. Costello, K.P. Sherlock, D. Lafarga, and A. Varma: Sep. Purif. Technol., 2001, vol. 25, pp. 117–26. https://doi.org/10.1016/S1383-5866(01)00096-X.

    Article  CAS  Google Scholar 

  12. B. Akgun, H.E. Camurlu, Y. Topkaya, and N. Sevinc: Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 601–607. https://doi.org/10.1016/j.ijrmhm.2011.04.005.

    Article  CAS  Google Scholar 

  13. F. Maglia, U.A. Tamburini, G. Spinolo, and Z.A. Munir: J. Am. Ceram. Soc., 2000, vol. 83, pp. 1935–941. https://doi.org/10.1111/j.1151-2916.2000.tb01493.x.

    Article  CAS  Google Scholar 

  14. A.G. Merzhanov: J. Mater. Chem., 2004, vol. 14, pp. 1779–786. https://doi.org/10.1039/B401358C.

    Article  CAS  Google Scholar 

  15. A. Makino and C.K. Law: J. Am. Ceram. Soc., 1994, vol. 77, pp. 778–86. https://doi.org/10.1111/j.1151-2916.1994.tb05365.x.

    Article  CAS  Google Scholar 

  16. A. Ashoka, A. Kumar, and F. Tarlochan: Int. J. Self-Propagating High-Temp. Synth., 2018, vol. 27, pp. 141–53. https://doi.org/10.3103/S1061386218030020.

    Article  Google Scholar 

  17. V.N. Sanin and D.M. Ikornikov: Russ. J. Non-Ferr. Met., 2020, vol. 61, pp. 436–45. https://doi.org/10.3103/S1067821220040070.

    Article  Google Scholar 

  18. A.A. Zaitsev, Z.A. Sentyurina, E.A. Levashov, Y.S. Pogozhev, V.N. Sanin, P.A. Loginov, and M.I. Petrzhik: Mater. Sci. Eng. A, 2017, vol. 690, pp. 463–72. https://doi.org/10.1016/j.msea.2016.09.075.

    Article  CAS  Google Scholar 

  19. J. Feizabadi, J. Vahdati-Khaki, M. Haddad-Sabzevar, M. Sharifitabar, and S. Aliakbari-Sani: Mater Des., 2015, vol. 84, pp. 325–30. https://doi.org/10.1016/j.matdes.2015.06.138.

    Article  CAS  Google Scholar 

  20. S. Grohmann, G. Langhans, A. Reindl, V. Sidarava, and M.F. Zaeh: J. Mater. Process Tech., 2020, vol. 282, p. 116637. https://doi.org/10.1016/j.jmatprotec.2020.116637.

    Article  CAS  Google Scholar 

  21. A. Ghanbari, M. Sakaki, A. Faeghinia, MSh. Bafghi, and K. Yanagisawa: Bull. Mater. Sci., 2016, vol. 39, pp. 925–33. https://doi.org/10.1007/s12034-016-1229-4.

    Article  CAS  Google Scholar 

  22. A. Dmitruk, K. Naplocha, M. Lagos, P. Egizabal, and J. Grzęda: Compos Theory Pract., 2018, vol. 18, pp. 241–44.

    CAS  Google Scholar 

  23. A. Chakraborti, N. Vast, and Y. Le Godec: Solid. State. Sci., 2020, vol. 104, pp. 1062–65. https://doi.org/10.1016/j.solidstatesciences.2020.106265.

    Article  CAS  Google Scholar 

  24. P. Zhang, T. Xia, G. Zhang, and L. Yan: Mater. Sci. Forum., 2008, vol. 575, pp. 1086–92. https://doi.org/10.4028/www.scientific.net/MSF.575-578.1086.

    Article  Google Scholar 

  25. M. Sharifitabar, J. Vahdati-Khaki, and M. Haddad-Sabzevar: Int. J. Self-Propag. High-Temp. Synth., 2014, vol. 47, pp. 93–101. https://doi.org/10.1016/j.ijrmhm.2014.07.006.

    Article  CAS  Google Scholar 

  26. B.S.B. Reddy, K. Das, and S. Das: J. Mater. Sci., 2007, vol. 42, pp. 9366–378. https://doi.org/10.1007/s10853-007-1827-z.

    Article  CAS  Google Scholar 

  27. W. Xi, S. Yin, and H. Lai: J. Mater. Process. Technol., 2003, vol. 137, pp. 1–4. https://doi.org/10.1016/S0924-0136(02)01050-6.

    Article  CAS  Google Scholar 

  28. S. Liu, J. Zhou, Y. Li, and X. Zhang: Opt. Laser. Technol., 2019, vol. 113, pp. 365–73. https://doi.org/10.1016/j.optlastec.2018.12.044.

    Article  CAS  Google Scholar 

  29. F. Kaya, M. Yetis, G. Ipek-Selimoglu, and B. Derin: Eng. Sci. Technol. Int. J., 2022, vol. 27, p. 101003. https://doi.org/10.1016/j.jestch.2021.05.007.

    Article  Google Scholar 

  30. S.K. Mishra, S.K. Das, and V. Sherbacov: Compos. Sci. Technol., 2007, vol. 67, pp. 2447–453. https://doi.org/10.1016/j.compscitech.2006.12.017.

    Article  CAS  Google Scholar 

  31. D. R. Gaskell, D. E. Laughlin, Introduction to the Thermodynamics of Materials, 6th Edition, CRC Press, Boca Raton, 2017, https://doi.org/10.1201/9781315119038

  32. S.C. Kung: Metall. Trans. B, 1991, vol. 22, pp. 673–75. https://doi.org/10.1007/BF02679023.

    Article  Google Scholar 

  33. H. Edris and D.G. McCartney: J. Mater. Sci., 1997, vol. 32, pp. 863–72. https://doi.org/10.1023/A:1018589230250.

    Article  CAS  Google Scholar 

  34. R.L. Gordon and G.W. Harris: Nature, 1955, vol. 175, pp. 1135–136. https://doi.org/10.1038/1751135a0.

    Article  CAS  Google Scholar 

  35. H.Y. Zhu, R. Gao, W.T. Jin, L.W. Qiu, and Z.L. Xue: Rare Met., 2018, vol. 37, pp. 621–24. https://doi.org/10.1007/s12598-015-0536-z.

    Article  CAS  Google Scholar 

  36. R. Badrnezhad, F. Nasri, H. Pourfarzad, and S. Khadem-Jafari: Int. J. Hydrog. Energy, 2021, vol. 46, pp. 3821–832.

    Article  CAS  Google Scholar 

  37. Y. Gui, C. Song, S. Wang, and D. Zhao: Mater. Res., 2016, vol. 31, pp. 66–75. https://doi.org/10.1557/jmr.2015.348.

    Article  CAS  Google Scholar 

  38. J. Liu, J. Zhang, L. Deng, and G. Hao: Surf. Eng., 2019, vol. 35, pp. 59–65. https://doi.org/10.1080/02670844.2018.1460091.

    Article  CAS  Google Scholar 

  39. Y.W. Xu and H.M. Wang: J. Alloys Compd., 2008, vol. 457, pp. 239–43. https://doi.org/10.1016/j.jallcom.2007.03.047.

    Article  CAS  Google Scholar 

  40. Y.W. Xu and H.M. Wang: J. Alloys Compd., 2007, vol. 440, pp. 101–107. https://doi.org/10.1016/j.jallcom.2006.09.009.

    Article  CAS  Google Scholar 

  41. K.P. Gupta: J. Ph. Equilib. Diffus., 2005, vol. 26, pp. 379–84. https://doi.org/10.1007/s11669-005-0095-3.

    Article  CAS  Google Scholar 

  42. F. Liu, S. Yang, W. Sun, S. Guo, and Z. Hu: Int. J. Mod. Phys. B, 2009, vol. 23, pp. 1066–73. https://doi.org/10.1142/S0217979209060476.

    Article  CAS  Google Scholar 

  43. P. Zhang, M. Li, H. Yan, J. Chen, Z. Yu, and X. Ye: J. Alloys Compd., 2019, vol. 785, pp. 984–1000. https://doi.org/10.1016/j.jallcom.2019.01.191.

    Article  CAS  Google Scholar 

  44. M. Sakaki, A. Karimzadeh-Behnami, and M.S. Bafghi: Int. J. Refract. Hard. Met., 2014, vol. 44, pp. 142–47. https://doi.org/10.1016/j.ijrmhm.2014.02.003.

    Article  CAS  Google Scholar 

  45. X.D. Cheng, J. Min, Z.Q. Zhu, and W.P. Ye: Metall. Mater., 2012, vol. 19, pp. 173–79. https://doi.org/10.1007/s12613-012-0534-1.

    Article  CAS  Google Scholar 

  46. O. Muller, R. Roy, A.N.D. William, and B. White: J. Am. Ceram. Soc., 1967, vol. 51, pp. 693–99. https://doi.org/10.1111/j.1151-2916.1968.tb15930.x.

    Article  Google Scholar 

  47. E.B. Rudnyi, E.A. Kaibicheva, and L.N. Sidorov: J. Chem. Thermodyn., 1990, vol. 22, pp. 623–32. https://doi.org/10.1016/0021-9614(90)90015-I.

    Article  CAS  Google Scholar 

  48. S. W. Dean, The Influence of Gas Generation on Flame Propagation for Nano-Al Based Energetic Materials, Texas Tech University, 2008, http://hdl.handle.net/2346/10786

  49. TYu. Kiseleva, A.A. Novakova, T.L. Talako, T.F. Grigoreva, and A.N. Falkova: Inorg. Mater., 2009, vol. 45, pp. 827–31. https://doi.org/10.1134/S002016850907022X.

    Article  CAS  Google Scholar 

  50. C. Poupart: Control of Ignition Temperature in Hybrid Thermite-Intermetallic Reactive Systems, Christian Poupart, Ottawa, 2015, https://doi.org/10.20381/ruor-2833

  51. J.J. Granier and M.L. Pantoya: Combust. Flame., 2004, vol. 138, pp. 373–83. https://doi.org/10.1016/j.combustflame.2004.05.006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Mirjalili.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahari, M., Vahdati Khaki, J. & Mirjalili, M. Microwave-Assisted Combustion Synthesis of Ni–Cr–Mo Superalloy Using Mixed Oxides: Mechanism and Thermodynamics Aspects. Metall Mater Trans A 54, 2605–2616 (2023). https://doi.org/10.1007/s11661-023-07038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07038-4

Navigation