Skip to main content
Log in

Solutionization via Severe Plastic Deformation: Effect of Temperature and Quench Method in a ShAPE-Processed Al–Mg–Si Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Shear-Assisted Processing and Extrusion (ShAPE) is an advanced manufacturing technique that allows for many unique processes, and this work focuses on the ability of the ShAPE process to solutionize alloying elements by high-temperature severe plastic deformation, followed quickly by quenching, to skip a conventional solutionization heat treatment. Here, this solutionization during processing of an Al–Mg–Si alloy 6082 was studied using microhardness and microscopy. It was found that the plastic deformation increased the degree of solutionization at a given temperature, allowing for large supersaturations at temperatures well below conventional solutionization heat treatments. In addition, an air quench immediately after ShAPE processing was found to be fast enough to produce a good supersaturated solid solution in this alloy, and the as-artificially aged hardness was within specifications for a conventionally processed material that underwent a solutionization treatment followed by a water quench. This new processing pathway allows for high-quality material to be produced at a much lower energy cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.N. Harsha, V. Mithun Kulkarni, and B. Satish Babu: Mater. Today Proc., 2018, vol. 5, pp. 22340–49.

    Article  Google Scholar 

  2. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  CAS  Google Scholar 

  3. S. Dadbakhsh, A. Karimi Taheri, and C.W. Smith: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4758–66.

    Article  Google Scholar 

  4. Yu. Ivanisenko, R. Kulagin, V. Fedorov, A. Mazilkin, T. Scherer, B. Baretzky, and H. Hahn: Mater. Sci. Eng. A, 2016, vol. 664, pp. 247–56.

    Article  CAS  Google Scholar 

  5. C.C. Koch: Annu. Rev. Mater. Sci., 1989, vol. 19, pp. 121–43.

    Article  CAS  Google Scholar 

  6. S.M. Ghalehbandi, M. Malaki, and M. Gupta: Appl. Sci., 2019, vol. 9, p. 3627.

    Article  CAS  Google Scholar 

  7. R. Valiev: Nat. Mater., 2004, vol. 3, pp. 511–16.

    Article  CAS  Google Scholar 

  8. S.H. Lee, Y. Saito, T. Sakai, and H. Utsunomiya: Mater. Sci. Eng. A, 2002, vol. 325, pp. 228–35.

    Article  Google Scholar 

  9. S.R. Agnew, AYu. Vinogradov, S. Hashimoto, and J.R. Weertman: J. Electron. Mater., 1999, vol. 28, pp. 1038–044.

    Article  CAS  Google Scholar 

  10. K. Bryła: Mater. Sci. Eng. A, 2020, vol. 772, p. 138750.

    Article  Google Scholar 

  11. M. Komarasamy, X. Li, S.A. Whalen, X. Ma, N. Canfield, M.J. Olszta, T. Varga, A.L. Schemer-Kohrn, A. Yu, N.R. Overman, S.N. Mathaudhu, and G.J. Grant: J. Mater. Sci., 2021, vol. 56, pp. 12864–80.

    Article  CAS  Google Scholar 

  12. V.V. Stolyarov, R. Lapovok, I.G. Brodova, and P.F. Thomson: Mater. Sci. Eng. A, 2003, vol. 357, pp. 159–67.

    Article  Google Scholar 

  13. W.J. Kim, H.G. Jeong, and H.T. Jeong: Scripta Mater., 2009, vol. 61, pp. 1040–43.

    Article  CAS  Google Scholar 

  14. Y. Estrin and A. Vinogradov: Acta Mater., 2013, vol. 61, pp. 782–817.

    Article  CAS  Google Scholar 

  15. S.A. Whalen, D.R. Herling, X. Li, M. Reza-E-Rabby, B.S. Taysom, and G.J. Grant: U.S. Patent 20210053100A1.

  16. B. S. Taysom, N. Overman, M. Olszta, M. Reza-E-Rabby, T. Skszek, M. DiCiano, and S. Whalen: Int. J. Mach. Tools Manuf. https://doi.org/10.1016/j.ijmachtools.2021.103798.

  17. S. Whalen, M. Olszta, Md. Reza-E-Rabby, T. Roosendaal, T. Wang, D. Herling, B.S. Taysom, S. Suffield, and N. Overman: J. Manuf. Process., 2021, vol. 71, pp. 699–710.

    Article  Google Scholar 

  18. R.E. Rabby, T. Wang, N.L. Canfield, T.J. Roosendaal, B.S. Taysom, D.D. Graff, D.R. Herling, and S.A. Whalen: CIRP J. Manuf. Sci. Technol. https://doi.org/10.1016/j.cirpj.2022.02.025.

  19. B.S. Taysom, N. Overman, M. Olszta, M. Reza-E-Rabby, T. Skszek, M. DiCiano, and S. Whalen: Int. J. Mach. Tools Manuf, 2021, vol. 169, p. 103798.

    Article  Google Scholar 

  20. T. Wang, J.E. Atehortua, M. Song, M. Reza-E-Rabby, B.S. Taysom, J. Silverstein, T. Roosendaal, D. Herling, and S. Whalen: Mater. Des., 2022, vol. 213, p. 110374.

    Article  CAS  Google Scholar 

  21. G. Mrówka, J. Sieniawski, and A. Nowotnik: J. Achiev. Mater. Manuf. Eng., 2009, vol. 32, pp. 162–70.

    Google Scholar 

  22. C.D. Marioara, S.J. Andersen, J. Jansen, and H.W. Zandbergen: Acta Mater., 2001, vol. 49, pp. 321–28.

    Article  CAS  Google Scholar 

  23. C. Cayron and P.A. Buffat: Acta Mater., 2000, vol. 48, pp. 2639–53.

    Article  CAS  Google Scholar 

  24. R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, and S.J. Andersen: Acta Mater., 2007, vol. 55, pp. 3815–23.

    Article  CAS  Google Scholar 

  25. M. Cooper and K. Robinson: Acta Crystallogr., 1966, vol. 20, pp. 614–17.

    Article  CAS  Google Scholar 

  26. A. Aginagalde, X. Gomez, L. Galdos, and C. García: J. Eng. Mater. Technol., 2009, vol. 131, p. 044501.

    Article  Google Scholar 

  27. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1–84.

    Article  CAS  Google Scholar 

  28. S.C. Bergsma, M.E. Kassner, X. Li, and R.S. Rosen: Quench Sensitivity of Hot Extruded 6061-T6 and 6069-T6 Aluminum Alloys, Lawrence Livermore National Lab. (LLNL), Livermore, 2000.

  29. A. Güzel, A. Jäger, N. Ben Khalifa, and A.E. Tekkaya: Key Eng. Mater., 2010, vol. 424, pp. 51–56.

    Article  Google Scholar 

  30. V. Noseda Grau, A. Cuniberti, A. Tolley, V. Castro Riglos, and M. Stipcich: J. Alloys Compd., 2016, vol. 684, pp. 481–87.

    Article  CAS  Google Scholar 

  31. A. Mauduit and H. Gransac: Ann. Chim. Sci. Matér., 2020, vol. 44, pp. 141–49.

    Article  Google Scholar 

  32. European Committee for Standardization: EN 573–3: Aluminium and Aluminium Alloys—Chemical Composition and Form of Wrought Products—Part 3: Chemical Composition and Form of Products, 2007.

  33. W.Z. Misiolek and R.M. Kelly: in ASM Handbook, Volume 14A: Bulk Forming, vol. 14A, ASM, Materials Park, 2005, pp. 522–27.

  34. ASTM International: ASTM E384: Standard Test Method for Microindentation Hardness of Materials, ASTM International, West Conshohocken, 2021.

  35. ASTM International: 2016.

  36. M. Tercelj, M. Fazarinc, G. Kugler, and I. Perus: Constr. Build. Mater., 2013, vol. 44, pp. 781–91.

    Article  Google Scholar 

  37. G. Mrówka-Nowotnik, J. Sieniawski, and M. Wierzbińska: Arch. Mater. Sci. Eng., 2007, vol. 28(2), pp. 69–76.

    Google Scholar 

  38. Y.-L. Chang, F.-Y. Hung, and T.-S. Lui: J. Market. Res., 2019, vol. 8, pp. 173–79.

    CAS  Google Scholar 

  39. H. Fröck, B. Milkereit, P. Wiechmann, A. Springer, M. Sander, O. Kessler, and M. Reich: Metals, 2018, vol. 8, p. 265.

    Article  Google Scholar 

  40. X. He, Q. Pan, H. Li, Z. Huang, S. Liu, K. Li, and X. Li: Metals, 2019, vol. 9, p. 173.

    Article  CAS  Google Scholar 

  41. Y. Birol: J. Therm. Anal. Calorim., 2006, vol. 83, pp. 219–22.

    Article  CAS  Google Scholar 

  42. S. Bikass, B. Andersson, A. Pilipenko, and H.P. Langtangen: Int. J. Therm. Sci., 2012, vol. 52, pp. 50–58.

    Article  CAS  Google Scholar 

  43. K. Anderson, J. Weritz, and J.G. Kaufman: ASM Handbook, Volume 2B: Properties and Selection of Aluminum Alloys, ASM International, Materials Park, 2019.

  44. B. Milkereit and M.J. Starink: Mater. Des., 2015, vol. 76, pp. 117–29.

    Article  CAS  Google Scholar 

  45. N. Kumar, S. Goel, R. Jayaganthan, and H.-G. Brokmeier: Metallogr. Microstruct. Anal., 2015, vol. 4, pp. 411–22.

    Article  CAS  Google Scholar 

  46. G. Mrówka-Nowotnik and J. Sieniawski: J. Mater. Process. Technol., 2005, vol. 162–163, pp. 367–72.

    Article  Google Scholar 

  47. B.C. Shang, Z.M. Yin, G. Wang, B. Liu, and Z.Q. Huang: Mater. Des., 2011, vol. 32, pp. 3818–22.

    Article  CAS  Google Scholar 

  48. D. Schwen, M. Wang, R. Averback, and P. Bellon: J. Mater. Res., 2013, vol. 28, pp. 2687–93.

    Article  CAS  Google Scholar 

  49. J. Lendvai, H.-J. Gudladt, and V. Gerold: Scripta Metall., 1988, vol. 22, pp. 1755–60.

    Article  CAS  Google Scholar 

  50. H. Luo, J. Sietsma, and S. Van Der Zwaag: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1889–98.

    Article  CAS  Google Scholar 

  51. N.X. Sun, X.D. Liu, and K. Lu: Scripta Mater., 1996, vol. 34, pp. 1201–07.

    Article  CAS  Google Scholar 

  52. F.L. Cumbrera and F. Sánchez-Bajo: Thermochim. Acta, 1995, vol. 266, pp. 315–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the U.S. Department of Energy Vehicle Technologies Office (DOE/VTO) Lightweight Metals Core Program for supporting this work. The authors are grateful for the dedication of Anthony Guzman for the excellent preparation of specimens for microstructural characterization and to Maura Zimmerschied for technical editing of this manuscript. Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the DOE under contract DE-AC05-76RL01830.

Author Contributions

BM: Investigation, formal analysis, data curation, writing—original draft, writing—review and editing. XM: Investigation. BST: Investigation. SW: Supervision and funding acquisition.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian K. Milligan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milligan, B.K., Ma, X., Taysom, B.S. et al. Solutionization via Severe Plastic Deformation: Effect of Temperature and Quench Method in a ShAPE-Processed Al–Mg–Si Alloy. Metall Mater Trans A 54, 2576–2584 (2023). https://doi.org/10.1007/s11661-023-07034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07034-8

Navigation