Skip to main content
Log in

Identification of Hydrogen Trapping in Aluminum Alloys Via Muon Spin Relaxation Method and First-Principles Calculations

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Although hydrogen embrittlement susceptibility of high-strength Al alloys is recognized as a critical issue in the practical use of Al alloys, identifying the hydrogen trapping or distribution has been challenging. In the present study, an effective approach based on experiment and simulation is proposed to explore the potential trap sites in Al alloys. At first, zero-field muon spin relaxation experiments were implemented in the temperature range from 5 K to 300 K. The plot of the temperature dependence of dipole field widths (∆) provides several characteristic peaks corresponding to the hydrogen trapping. Four dilute Al alloys (Al–Mg, Al–Cu, Al–Ti, and Al–V) were chosen to explore the possible trap sites. Atomic configurations of the muon trapping sites corresponding to the observed ∆ peaks are well assigned using the first-principles calculations for the binding energies of hydrogen around a solute and solute-vacancy pair. The extracted linear relationship between the muon ∆ peak temperature and the binding energy enables us to explore the potential alloying elements and their complex that have strong binding energies with hydrogen in Al alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Nguyen, A.W. Thompson, and I.M. Bernstein: Acta Metall., 1987, vol. 35, pp. 2417–25.

    Article  CAS  Google Scholar 

  2. M.S. Bhuiyan, H. Toda, Z. Peng, S. Hang, K. Horikawa, K. Uesugi, A. Takeuchi, N. Sakaguchi, and Y. Watanabe: Mater. Sci. Eng. A, 2016, vol. 655, pp. 221–28.

    Article  CAS  Google Scholar 

  3. H. Su, H. Toda, R. Masunaga, K. Shimizu, H. Gao, K. Sasaki, et al.: Acta Mater., 2018, vol. 159, pp. 332–43.

    Article  CAS  Google Scholar 

  4. K. Shimizu, H. Toda, K. Uesugi, and A. Takeuchi: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 1–9.

    Article  Google Scholar 

  5. C. Larignon, J. Alexis, E. Andrieu, L. Lacroix, G. Odemer, and C. Blanc: Scr. Mater., 2013, vol. 68, pp. 479–82.

    Article  CAS  Google Scholar 

  6. E. Haritidou, G. Papapolymerou, G.N. Haidemenopoulos, N. Hasiotis, and V. Bontozoglou: Scr. Mater., 1999, vol. 41, pp. 1327–32.

    Article  Google Scholar 

  7. P. Chao and R.A. Karnesky: Mater. Sci. Eng. A, 2016, vol. 658, pp. 422–28.

    Article  CAS  Google Scholar 

  8. D. Xie, S. Li, M. Li, Z. Wang, P. Gumbsch, J. Sun, E. Ma, J. Li, and Z. Shan: Nat. Commun., 2016, vol. 7, p. 13341.

    Article  CAS  Google Scholar 

  9. G.A. Young Jr. and J.R. Scully: Acta Mater., 1998, vol. 46, pp. 6337–40.

    Article  CAS  Google Scholar 

  10. H.K. Birnbauma, C. Buckley, F. Zeides, E. Sirois, P. Rozenak, S. Spooner, and J.S. Lin: J. Alloy. Compd., 1997, vol. 253–254, pp. 260–64.

    Article  Google Scholar 

  11. D. Herlach, C. Kottler, T. Wider, and K. Maier: Phys. B, 2000, vol. 289–290, pp. 443–46.

    Article  Google Scholar 

  12. T. Izumi and G. Itoh: Mater. Trans., 2011, vol. 52, pp. 130–34.

    Article  CAS  Google Scholar 

  13. H. Suzuki, D. Kobayashi, N. Hanada, K. Takai, and Y. Hagihara: Mater. Trans., 2011, vol. 52, pp. 1741–47.

    Article  CAS  Google Scholar 

  14. H. Zhao, P. Chakraborty, D. Ponge, T. Hickel, B. Sun, C.-H. Wu, B. Gault, and D. Raabe: Nature, 2022, vol. 602, p. 437.

    Article  CAS  Google Scholar 

  15. C. Wolverton, V. Ozoliņš, and M. Asta: Phys. Rev. B, 2004, vol. 69, p. 144109.

    Article  Google Scholar 

  16. G. Lu and E. Kaxiras: Phys. Rev. Lett., 2005, vol. 94, p. 155501.

    Article  Google Scholar 

  17. M. Yamaguchi, K. Ebihara, M. Itakura, T. Kadoyoshi, T. Suzudo, and H. Kaburaki: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 330–39.

    Article  Google Scholar 

  18. M. Yamaguchi, K. Ebihara, M. Itakura, T. Tsuru, M. Matsuda, and H. Toda: Comput. Mater. Sci., 2019, vol. 156, pp. 368–75.

    Article  CAS  Google Scholar 

  19. T. Tsuru, M. Yamaguchi, K. Ebihara, M. Itakura, Y. Shiihara, K. Matsuda, and H. Toda: Comput. Mater. Sci., 2018, vol. 148, pp. 301–306.

    Article  CAS  Google Scholar 

  20. T. Tsuru, K. Shimizu, M. Yamaguchi, M. Itakura, K. Ebihara, A. Bendo, K. Matsuda, and H. Toda: Sci. Rep., 2020, vol. 10, p. 1998.

    Article  CAS  Google Scholar 

  21. K.W. Kehr, D. Richter, J.-M. Welter, O. Hartmann, E. Karlsson, L.O. Norlin, T.O. Niinikoski, and A. Yaouanc: Phys. Rev. B, 1982, vol. 26, pp. 567–90.

    Article  CAS  Google Scholar 

  22. V.G. Storchak and N.V. Prokof’ev: Rev. Mod. Phys., 1998, vol. 70, pp. 929–78.

    Article  CAS  Google Scholar 

  23. T. Yamazaki: Hyperfine Interact., 1979, vol. 6, pp. 115–25.

    Article  CAS  Google Scholar 

  24. T. Yamazaki: Hyperfine Interact., 1997, vol. 104, pp. 3–13.

    Article  CAS  Google Scholar 

  25. W.J. Kossler, A.T. Fiory, W.F. Lankford, K.G. Lynn, R.P. Minnich, and C.E. Stronach: Hyperfine Interact., 1979, vol. 6, pp. 295–99.

    Article  CAS  Google Scholar 

  26. W.J. Kossler, A.T. Fiory, W.F. Lankford, J. Lindemuth, K.G. Lynn, S. Mahajan, R.P. Minnich, K.G. Petzinger, and C.E. Stronach: Phys. Rev. Lett., 1978, vol. 41, pp. 1558–61.

    Article  CAS  Google Scholar 

  27. R.S. Hayano, Y.J. Uemura, J. Imazato, N. Nishida, T. Yamazaki, and R. Kubo: Phys. Rev. B, 1979, vol. 20, pp. 850–59.

    Article  CAS  Google Scholar 

  28. O. Hartmann, E. Karlsson, B. Lindgren, E. Wäckelgård, D. Richter, R. Hempelmann, and J.M. Welter: Hyperfine Interact., 1984, vol. 17, pp. 197–201.

    Article  CAS  Google Scholar 

  29. O. Hartmann, E. Karlsson, E. Wäckelgrd, R. Wäppling, D. Richter, R. Hempelmann, and T.O. Niinikoski: Phys. Rev. B, 1988, vol. 37, pp. 4425–40.

    Article  CAS  Google Scholar 

  30. J.A. Brown, R.H. Heffner, M. Leon, M.E. Schillaci, D.W. Cooke, and W.B. Gauste: Phys. Rev. Lett., 1979, vol. 43, pp. 1513–16.

    Article  CAS  Google Scholar 

  31. E. Sato, T. Hatano, Y. Suzuki, M. Imafuku, M. Sunaga, M. Doyama, Y. Morozumi, T. Suzuki, and K. Nagamine: Hyperfine Interact., 1984, vol. 17, pp. 203–09.

    Article  CAS  Google Scholar 

  32. T. Hatano, Y. Suzuki, M. Doyama, Y.J. Uemura, T. Yamazaki, and J.H. Brewer: Hyperfine Interact., 1984, vol. 17, pp. 211–17.

    Article  CAS  Google Scholar 

  33. M. Doyama, T. Hatano, T. Natsui, Y. Suzuki, Y.J. Uemura, T. Yamazaki, J.H. Brewer, and K. Crowe: Hyperfine Interact., 1984, vol. 17, pp. 225–29.

    Article  CAS  Google Scholar 

  34. E. Karlsson, R. Wäppling, S.W. Lidström, O. Hartmann, R. Kadono, R.F. Kiefl, R. Hempelmann, and D. Richter: Phys. Rev. B, 1995, vol. 52, pp. 6417–23.

    Article  CAS  Google Scholar 

  35. R. Kadono, J. Imazato, T. Matsuzaki, K. Nishiyama, K. Nagamine, T. Yamazaki, D. Richter, and J.M. Welter: Phys. Rev. B, 1989, vol. 39, pp. 23–41.

    Article  CAS  Google Scholar 

  36. S. Wenner, R. Holmestad, K. Matsuda, K. Nishimura, T. Matsuzaki, D. Tomono, F.L. Pratt, and C.D. Marioara: Phys. Rev. B, 2012, vol. 86, p. 104201.

    Article  Google Scholar 

  37. S. Wenner, K. Nishimura, K. Matsuda, T. Matsuzaki, D. Tomono, F.L. Pratt, C.D. Marioara, and R. Holmestad: Acta Mater., 2013, vol. 61, pp. 6082–92.

    Article  CAS  Google Scholar 

  38. S. Wenner, K. Nishimura, K. Matsuda, T. Matsuzaki, D. Tomono, F.L. Pratt, C.D. Marioara, and R. Holmestad: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5777–81.

    Article  Google Scholar 

  39. K. Nishimura, K. Matsuda, R. Komaki, N. Nunomra, S. Wenner, R. Holmestad, T. Matsuzaki, I. Watanabe, and F.L. Pratt: Arch. Metall. Mater., 2015, vol. 60, pp. 925–29.

    Article  CAS  Google Scholar 

  40. K. Nishimura, K. Matsuda, N. Nunomura, T. Namiki, S. Lee, D. Hatakeyama, W. Higemoto, Y. Miyake, T. Matsuzaki, G. Itoh, K. Ihara, H. Toda, and M. Yamaguchi: J. Phys. Soc. Jpn., 2018, vol. 21, p. 011030.

    Google Scholar 

  41. S. Wenner, C.D. Marioara, K. Nishimura, K. Matsuda, S. Lee, T. Namiki, I. Watanabe, T. Matsuzaki, and R. Holmestad: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 3446–51.

    Article  Google Scholar 

  42. K. Nishimura, K. Matsuda, S. Lee, I. Watanabe, M.A. Jawad, and T. Matsuzaki: Mater. Sci. Forum, 2020, vol. 985, pp. 10–15.

    Article  Google Scholar 

  43. A.I. Morosov and A.S. Sigov: J. Phys. Condens. Matter, 1990, vol. 2, pp. 505–12.

    Article  Google Scholar 

  44. G. Kresse and J. Hafner: Phys. Rev. B, 1993, vol. 47, pp. 558–61.

    Article  CAS  Google Scholar 

  45. G. Kresse and J. Furthmuller: Phys. Rev. B, 1996, vol. 54, pp. 11169–86.

    Article  CAS  Google Scholar 

  46. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–68.

    Article  CAS  Google Scholar 

  47. H.J. Monkhorst and J.D. Pack: Phys. Rev. B, 1976, vol. 13, pp. 5188–92.

    Article  Google Scholar 

  48. K. Momma and F. Izumi: J. Appl. Crystallogr., 2011, vol. 44, pp. 1272–76.

    Article  CAS  Google Scholar 

  49. G.M. Scamans: J. Mater. Sci., 1978, vol. 13, pp. 27–35.

    Article  CAS  Google Scholar 

  50. J.-P. Harvey and P. Chartrand: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 908–24.

    Article  CAS  Google Scholar 

  51. K.M. Kojima, M. Hiraishi, H. Okabe, A. Koda, R. Kadono, K. Ide, S. Matsuishi, H. Kumomi, T. Kamiya, and H. Hosono: Appl. Phys. Lett., 2019, vol. 115, p. 122104.

    Article  Google Scholar 

  52. G. Henkelman, B.P. Uberuaga, and H. Jónsson: J. Chem. Phys., 2000, vol. 113, pp. 9901–04.

    Article  CAS  Google Scholar 

  53. J. Rath, M. Manninen, and C.S. Wang: Solid State Commun., 1979, vol. 31, pp. 1003–07.

    Article  CAS  Google Scholar 

  54. I.J. Onuorah, P. Bonfà, R. De Renzi, L. Monacelli, F. Mauri, M. Calandra, and I. Errea: Phys. Rev. Mater., 2019, vol. 3, p. 073804.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by JST CREST (Grant No. JPMJCR1995) and JSPS KAKENHI (Grant Nos. 22K04758, 22H01762). T.T. gratefully acknowledges the financial support from JST PRESTO (Grant No. JPMJPR1998). The muon experiment at the Materials and Life Science Experimental Facility of the J-PARC was performed under a user program (Proposal Nos. 2021B0002, 2022A0003). Simulation was performed on the large-scale parallel computer system of HPE SGI 8600 at JAEA.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomohito Tsuru or Katsuhiko Nishimura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscritpt submitted October 6, 2022; accepted February 15, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuru, T., Nishimura, K., Matsuda, K. et al. Identification of Hydrogen Trapping in Aluminum Alloys Via Muon Spin Relaxation Method and First-Principles Calculations. Metall Mater Trans A 54, 2374–2383 (2023). https://doi.org/10.1007/s11661-023-07024-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07024-w

Navigation