Abstract
Co-based alloys have been used as biomedical materials in the cast or wrought form for more than fifty years. Since then, studies have been performed to better understand the high mechanical strength and wear resistance of these alloys. Recently, additive manufacturing techniques, such as laser-powder bed fusion (L-PBF), are being employed to produce metallic implants directly from metal precursor powder. To achieve a balance between strength and ductility of L-PBF Co-based alloys, a manipulation of phase constituents through heat treatments is essential. In the present work, an in situ analysis of the γ-FCC → ε-HCP phase transformation occurring during aging heat treatment of the Co–28Cr–6Mo alloy produced by L-PBF was performed. For this, time-resolved synchrotron X-ray diffraction was employed. Our results revealed that a solution heat treatment before aging changes the kinetics of the γ-FCC → ε-HCP phase transformation as well as the ε-HCP phase morphology.







Similar content being viewed by others
References
A.L. Jardini, M.A. Larosa, R. Maciel Filho, C.A. de Zavaglia, L.F. Bernardes, C.S. Lambert, D.R. Calderoni, and P. Kharmandayan: J. Craniomaxillofac. Surg., 2014, vol. 42, pp. 1877–84.
X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, and Y.M. Xie: Biomaterials, 2016, vol. 83, pp. 127–41.
A. Edelmann, L. Riedel, and R. Hellmann: Materials (Basel), 2020, vol. 13, p. 5390.
B. Patel, G. Favaro, F. Inam, M.J. Reece, A. Angadji, W. Bonfield, J. Huang, and M. Edirisinghe: Mater. Sci. Eng. C, 2012, vol. 32, pp. 1222–29.
M.T. Andani, N. Shayestehmoghaddam, C. Haberland, D. Dean, M.J. Miller, and M. Elahinia: Acta Biomater., 2014, vol. 10, pp. 4058–70.
A.D.J. Saldívar García, A.M. Medrano, A.S. Rodríguez, and A. Salinas Rodríguez: Metall. Mater. Trans. A, 1999, vol. 30, pp. 1177–184.
S. Cai, M.R. Daymond, and Y. Ren: Mater. Sci. Eng. A, 2013, vol. 580, pp. 209–16.
N. Iskounen, P.A. Dubos, J. Fajoui, M. Coret, M.J. Moya, B. Girault, N. Barrier, N. Bruzy, E. Hug, and D. Gloaguen: Metall. Mater. Trans. A, 2021, vol. 52, pp. 1477–91.
P.-A. Dubos, J. Fajoui, N. Iskounen, M. Coret, S. Kabra, J. Kelleher, B. Girault, and D. Gloaguen: Mater. Lett., 2020, vol. 281, 128812.
N.C. Dahn, D. Morphy, and K. Rajan: Acta Metall., 1984, vol. 32, pp. 1317–22.
L.H.M. Antunes, J.J. Hoyos, E.B. Fonseca, M. Béreš, P.F. da Silva Farina, E.S.N. Lopes, A.L. Jardini, and R.M. Filho: Mater. Sci. Eng. A, 2019, vol. 764, p. 138262.
A.L. Ramirez-Ledesma, J.C. Luna Manuel, H.F. Lopez, and J.A. Juarez Islas: Mater. Sci. Eng. A, 2022, vol. 844, p. 143161.
M. Zhang, Y. Yang, C. Song, Y. Bai, and Z. Xiao: J. Alloys Compd., 2018, vol. 750, pp. 878–86.
B.T. Donkor, J. Song, Y. Fu, M. Kattoura, S.R. Mannava, M.A. Steiner, and V.K. Vasudevan: Scr. Mater., 2020, vol. 179, pp. 65–69.
D. Gloaguen, B. Girault, B. Courant, P.A. Dubos, M.J. Moya, F. Edy, and J. Rebelokornmeier: Metall. Mater. Trans. A, 2020, vol. 51, pp. 951–61.
L. Novotny, M. Béreš, B. Carpentieri, and H.F.G. Abreu: ECS Trans., 2022, vol. 107, p. 1761.
L.H.M. Antunes, J.J. Hoyos, T.C. Andrade, P.W.C. Sarvezuk, L. Wu, J.A. Ávila, J.P. Oliveira, N. Schell, A.L. Jardini, J. Žilková, P.F. da Silva Farina, H.F.G. Abreu, and M. Béreš: Addit. Manuf., 2021, vol. 46, p. 102100.
Y. Zhou, Q. Sun, X. Dong, N. Li, Z.J. Shen, Y. Zhong, M. Eriksson, J. Yan, S. Xu, and C. Xin: J. Alloys Compd., 2020, vol. 840, p. 155664.
R.T. Smith, T. Lolla, D. Gandy, L. Wu, G. Faria, A.J. Ramirez, S.S. Babu, and P.M. Anderson: Scr. Mater., 2015, vol. 98, pp. 60–63.
EOS: Material Data Sheet EOS CobaltChrome MP1, 2011, vol. 49, pp. 1–6.
G. Faria, L. Wu, T. Alonso, A. Isaac, J. Piton, R. Neuenschwander, and A.J. Ramirez: Neutrons and Electrons Scattering II, in In-situ studies with photons. T. Kannengiesser, S.S. Babu, Y. Komizo, and A.J. Ramirez, eds., Springer International Publishing, Cham, 2014, pp. 245–59.
I.V. Ivanov, K.I. Emurlaev, D.V. Lazurenko, A. Stark, and I.A. Bataev: Mater. Charact., 2020, vol. 166, 110403.
M.R. Crivoi, J.J. Hoyos, M.T. Izumi, D.J.M. de Aguiar, R.S. Namur, A.L. Terasawa, and O.M. Cintho: Cryogenics (Guildf), 2020, vol. 105, 103020.
S.V. Navas, J.J. Hoyos, E.A. Torres, M.T. Izumi, and O.M. Cintho: Cryogenics (Guildf), 2021, vol. 120, 103384.
S. Kurosu, H. Matsumoto, and A. Chiba: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2613–25.
K. Yamanaka, M. Mori, and A. Chiba: Acta Biomater., 2013, vol. 9, pp. 6259–67.
S.H. Lee, E. Takahashi, N. Nomura, and A. Chiba: Nippon Kinzoku Gakkaishi, 2005, vol. 70, pp. 260–64.
C. Song, H. Park, H. Seong, and H.F. López: Metall. Mater. Trans. A, 2006, vol. 37, pp. 3197–204.
E. Hug, C. Keller, P.A. Dubos, and M.M. Celis: J. Mater. Res. Technol., 2021, vol. 11, pp. 1362–77.
Z. Wang, S.Y. Tang, S. Scudino, Y.P. Ivanov, R.T. Qu, D. Wang, C. Yang, W.W. Zhang, A.L. Greer, J. Eckert, and K.G. Prashanth: Addit. Manuf., 2021, vol. 37, 101725.
M. Béreš, C.C. Silva, P.W.C. Sarvezuk, L. Wu, L.H.M. Antunes, A.L. Jardini, A.L.M. Feitosa, J. Žilková, H.F.G. de Abreu, and R.M. Filho: Mater. Sci. Eng. A, 2018, vol. 714, pp. 36–42.
K. Yamanaka, M. Mori, and A. Chiba: J. Mech. Behav. Biomed. Mater., 2014, vol. 29, pp. 417–26.
H.-R. Wenk, I. Lonardelli, and D. Williams: Acta Mater., 2004, vol. 52, pp. 1899–907.
M. Béreš, H.F.G. Abreu, L.P.M. Santos, C.M. Davies, and D. Dye: Sci. Technol. Weld. Join., 2015, vol. 20, pp. 353–60.
G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7, pp. 1897–904.
W. Bollmann: Crystal defects and crystalline interfaces, Springer, Berlin, 1970, pp. 78–97.
D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys (Revised Reprint), CRC Press, Boca Raton, 2009.
R. Bauer, E.A. Jägle, W. Baumann, and E.J. Mittemeijer: Philos. Mag., 2011, vol. 91, pp. 437–57.
R.E. Smallman and P.S. Dobson: Metall. Trans., 1970, vol. 1, pp. 2383–89.
D.H. Chung, H. Guk, D. Kim, S.S. Han, N. Park, K. Choi, and S.-H. Choi: RSC Adv., 2014, vol. 4, p. 9223.
A. de J. Saldívar García, A. Maní Medrano, and A. Salinas Rodríguez: Scr. Mater., 1999, vol. 40, pp. 717–22.
M. Roudnická, O. Molnárová, J. Drahokoupil, J. Kubásek, J. Bigas, V. Šreibr, D. Paloušek, and D. Vojtěch: Addit. Manuf., 2021, vol. 44, 102025.
Y. Koizumi, S. Suzuki, K. Yamanaka, B. Lee, K. Sato, Y. Li, S. Kurosu, H. Matsumoto, and A. Chiba: Acta Mater., 2013, vol. 61, pp. 1648–61.
R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Today, 1998, vol. 1, pp. 14–5.
Y. Kajima, A. Takaichi, N. Kittikundecha, T. Nakamoto, T. Kimura, N. Nomura, A. Kawasaki, T. Hanawa, H. Takahashi, and N. Wakabayashi: Mater. Sci. Eng. A, 2018, vol. 726, pp. 21–31.
K. Rajan: Metall. Trans. A, 1984, vol. 15, pp. 1335–38.
Acknowledgments
The authors would like to acknowledge the experimental support of F.E. Montoro, Dr. O.R. Ospina and Dr. V. Mogili at the Brazilian Nanotechnology National Laboratory. The authors are grateful for the support provided by L. Wu during the synchrotron experiments (project Nr. 20180228) at the Brazilian Synchrotron Light Laboratory, part of the Brazilian Centre for Research in Energy and Materials (CNPEM), a private non-profit organization under the supervision of the Brazilian Ministry for Science, Technology, and Innovations (MCTI). L. Novotný acknowledges the financial support provided by Provincia Autonoma di Bolzano/Alto Adige—Ripartizione Innovazione, Ricerca, Università e Musei—projects HI-TECH MANUFACTURING (CUP codex I59C20000040003) and PREDICT (CUP codex I53C22002100003). This research used facilities of the Brazilian Nanotechnology National Laboratory (LNNano), part of the CNPEM, projects Nr.: SEM-C1-27387 and TEMM-C1-27373. A portion of the microstructural characterization was performed at the Central Analítica UFC/CT-INFRA-FINEP/Pro-Equipamentos-CAPES/CNPq-SisNano-MCTI 2019 (Grant 442577/2019-2)-INCT-FUNCAP. Authors acknowledge financial support by CRC 2021 project “Integrating Physics-Based and Data-Driven Modelling for Efficient Process Parameters, Material Design and Optimisation in Additive Manufacturing for Industry 4.0”. This work was partially financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil, Finance Code 001.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Antunes, L.H.M., Béreš, M., Hoyos, J.J. et al. Kinetics of FCC to HCP Transformation During Aging Heat Treatment of Co–28Cr–6Mo Alloy Fabricated by Laser-Powder Bed Fusion. Metall Mater Trans A 54, 2329–2339 (2023). https://doi.org/10.1007/s11661-023-07016-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-023-07016-w


