Skip to main content
Log in

Kinetics of FCC to HCP Transformation During Aging Heat Treatment of Co–28Cr–6Mo Alloy Fabricated by Laser-Powder Bed Fusion

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Co-based alloys have been used as biomedical materials in the cast or wrought form for more than fifty years. Since then, studies have been performed to better understand the high mechanical strength and wear resistance of these alloys. Recently, additive manufacturing techniques, such as laser-powder bed fusion (L-PBF), are being employed to produce metallic implants directly from metal precursor powder. To achieve a balance between strength and ductility of L-PBF Co-based alloys, a manipulation of phase constituents through heat treatments is essential. In the present work, an in situ analysis of the γ-FCC → ε-HCP phase transformation occurring during aging heat treatment of the Co–28Cr–6Mo alloy produced by L-PBF was performed. For this, time-resolved synchrotron X-ray diffraction was employed. Our results revealed that a solution heat treatment before aging changes the kinetics of the γ-FCC → ε-HCP phase transformation as well as the ε-HCP phase morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.L. Jardini, M.A. Larosa, R. Maciel Filho, C.A. de Zavaglia, L.F. Bernardes, C.S. Lambert, D.R. Calderoni, and P. Kharmandayan: J. Craniomaxillofac. Surg., 2014, vol. 42, pp. 1877–84.

    Article  Google Scholar 

  2. X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, and Y.M. Xie: Biomaterials, 2016, vol. 83, pp. 127–41.

    Article  CAS  Google Scholar 

  3. A. Edelmann, L. Riedel, and R. Hellmann: Materials (Basel), 2020, vol. 13, p. 5390.

    Article  CAS  Google Scholar 

  4. B. Patel, G. Favaro, F. Inam, M.J. Reece, A. Angadji, W. Bonfield, J. Huang, and M. Edirisinghe: Mater. Sci. Eng. C, 2012, vol. 32, pp. 1222–29.

    Article  CAS  Google Scholar 

  5. M.T. Andani, N. Shayestehmoghaddam, C. Haberland, D. Dean, M.J. Miller, and M. Elahinia: Acta Biomater., 2014, vol. 10, pp. 4058–70.

    Article  CAS  Google Scholar 

  6. A.D.J. Saldívar García, A.M. Medrano, A.S. Rodríguez, and A. Salinas Rodríguez: Metall. Mater. Trans. A, 1999, vol. 30, pp. 1177–184.

    Article  Google Scholar 

  7. S. Cai, M.R. Daymond, and Y. Ren: Mater. Sci. Eng. A, 2013, vol. 580, pp. 209–16.

    Article  CAS  Google Scholar 

  8. N. Iskounen, P.A. Dubos, J. Fajoui, M. Coret, M.J. Moya, B. Girault, N. Barrier, N. Bruzy, E. Hug, and D. Gloaguen: Metall. Mater. Trans. A, 2021, vol. 52, pp. 1477–91.

    Article  CAS  Google Scholar 

  9. P.-A. Dubos, J. Fajoui, N. Iskounen, M. Coret, S. Kabra, J. Kelleher, B. Girault, and D. Gloaguen: Mater. Lett., 2020, vol. 281, 128812.

    Article  CAS  Google Scholar 

  10. N.C. Dahn, D. Morphy, and K. Rajan: Acta Metall., 1984, vol. 32, pp. 1317–22.

    Article  CAS  Google Scholar 

  11. L.H.M. Antunes, J.J. Hoyos, E.B. Fonseca, M. Béreš, P.F. da Silva Farina, E.S.N. Lopes, A.L. Jardini, and R.M. Filho: Mater. Sci. Eng. A, 2019, vol. 764, p. 138262.

    Article  Google Scholar 

  12. A.L. Ramirez-Ledesma, J.C. Luna Manuel, H.F. Lopez, and J.A. Juarez Islas: Mater. Sci. Eng. A, 2022, vol. 844, p. 143161.

    Article  CAS  Google Scholar 

  13. M. Zhang, Y. Yang, C. Song, Y. Bai, and Z. Xiao: J. Alloys Compd., 2018, vol. 750, pp. 878–86.

    Article  CAS  Google Scholar 

  14. B.T. Donkor, J. Song, Y. Fu, M. Kattoura, S.R. Mannava, M.A. Steiner, and V.K. Vasudevan: Scr. Mater., 2020, vol. 179, pp. 65–69.

    Article  CAS  Google Scholar 

  15. D. Gloaguen, B. Girault, B. Courant, P.A. Dubos, M.J. Moya, F. Edy, and J. Rebelokornmeier: Metall. Mater. Trans. A, 2020, vol. 51, pp. 951–61.

    Article  CAS  Google Scholar 

  16. L. Novotny, M. Béreš, B. Carpentieri, and H.F.G. Abreu: ECS Trans., 2022, vol. 107, p. 1761.

    Article  Google Scholar 

  17. L.H.M. Antunes, J.J. Hoyos, T.C. Andrade, P.W.C. Sarvezuk, L. Wu, J.A. Ávila, J.P. Oliveira, N. Schell, A.L. Jardini, J. Žilková, P.F. da Silva Farina, H.F.G. Abreu, and M. Béreš: Addit. Manuf., 2021, vol. 46, p. 102100.

    CAS  Google Scholar 

  18. Y. Zhou, Q. Sun, X. Dong, N. Li, Z.J. Shen, Y. Zhong, M. Eriksson, J. Yan, S. Xu, and C. Xin: J. Alloys Compd., 2020, vol. 840, p. 155664.

    Article  CAS  Google Scholar 

  19. R.T. Smith, T. Lolla, D. Gandy, L. Wu, G. Faria, A.J. Ramirez, S.S. Babu, and P.M. Anderson: Scr. Mater., 2015, vol. 98, pp. 60–63.

    Article  CAS  Google Scholar 

  20. EOS: Material Data Sheet EOS CobaltChrome MP1, 2011, vol. 49, pp. 1–6.

  21. G. Faria, L. Wu, T. Alonso, A. Isaac, J. Piton, R. Neuenschwander, and A.J. Ramirez: Neutrons and Electrons Scattering II, in In-situ studies with photons. T. Kannengiesser, S.S. Babu, Y. Komizo, and A.J. Ramirez, eds., Springer International Publishing, Cham, 2014, pp. 245–59.

    Google Scholar 

  22. I.V. Ivanov, K.I. Emurlaev, D.V. Lazurenko, A. Stark, and I.A. Bataev: Mater. Charact., 2020, vol. 166, 110403.

    Article  CAS  Google Scholar 

  23. M.R. Crivoi, J.J. Hoyos, M.T. Izumi, D.J.M. de Aguiar, R.S. Namur, A.L. Terasawa, and O.M. Cintho: Cryogenics (Guildf), 2020, vol. 105, 103020.

    Article  CAS  Google Scholar 

  24. S.V. Navas, J.J. Hoyos, E.A. Torres, M.T. Izumi, and O.M. Cintho: Cryogenics (Guildf), 2021, vol. 120, 103384.

    Article  CAS  Google Scholar 

  25. S. Kurosu, H. Matsumoto, and A. Chiba: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2613–25.

    Article  Google Scholar 

  26. K. Yamanaka, M. Mori, and A. Chiba: Acta Biomater., 2013, vol. 9, pp. 6259–67.

    Article  CAS  Google Scholar 

  27. S.H. Lee, E. Takahashi, N. Nomura, and A. Chiba: Nippon Kinzoku Gakkaishi, 2005, vol. 70, pp. 260–64.

    Google Scholar 

  28. C. Song, H. Park, H. Seong, and H.F. López: Metall. Mater. Trans. A, 2006, vol. 37, pp. 3197–204.

    Article  Google Scholar 

  29. E. Hug, C. Keller, P.A. Dubos, and M.M. Celis: J. Mater. Res. Technol., 2021, vol. 11, pp. 1362–77.

    Article  CAS  Google Scholar 

  30. Z. Wang, S.Y. Tang, S. Scudino, Y.P. Ivanov, R.T. Qu, D. Wang, C. Yang, W.W. Zhang, A.L. Greer, J. Eckert, and K.G. Prashanth: Addit. Manuf., 2021, vol. 37, 101725.

    CAS  Google Scholar 

  31. M. Béreš, C.C. Silva, P.W.C. Sarvezuk, L. Wu, L.H.M. Antunes, A.L. Jardini, A.L.M. Feitosa, J. Žilková, H.F.G. de Abreu, and R.M. Filho: Mater. Sci. Eng. A, 2018, vol. 714, pp. 36–42.

    Article  Google Scholar 

  32. K. Yamanaka, M. Mori, and A. Chiba: J. Mech. Behav. Biomed. Mater., 2014, vol. 29, pp. 417–26.

    Article  CAS  Google Scholar 

  33. H.-R. Wenk, I. Lonardelli, and D. Williams: Acta Mater., 2004, vol. 52, pp. 1899–907.

    Article  CAS  Google Scholar 

  34. M. Béreš, H.F.G. Abreu, L.P.M. Santos, C.M. Davies, and D. Dye: Sci. Technol. Weld. Join., 2015, vol. 20, pp. 353–60.

    Article  Google Scholar 

  35. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7, pp. 1897–904.

    Google Scholar 

  36. W. Bollmann: Crystal defects and crystalline interfaces, Springer, Berlin, 1970, pp. 78–97.

    Book  Google Scholar 

  37. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys (Revised Reprint), CRC Press, Boca Raton, 2009.

    Book  Google Scholar 

  38. R. Bauer, E.A. Jägle, W. Baumann, and E.J. Mittemeijer: Philos. Mag., 2011, vol. 91, pp. 437–57.

    Article  CAS  Google Scholar 

  39. R.E. Smallman and P.S. Dobson: Metall. Trans., 1970, vol. 1, pp. 2383–89.

    Article  Google Scholar 

  40. D.H. Chung, H. Guk, D. Kim, S.S. Han, N. Park, K. Choi, and S.-H. Choi: RSC Adv., 2014, vol. 4, p. 9223.

    Article  CAS  Google Scholar 

  41. A. de J. Saldívar García, A. Maní Medrano, and A. Salinas Rodríguez: Scr. Mater., 1999, vol. 40, pp. 717–22.

    Article  Google Scholar 

  42. M. Roudnická, O. Molnárová, J. Drahokoupil, J. Kubásek, J. Bigas, V. Šreibr, D. Paloušek, and D. Vojtěch: Addit. Manuf., 2021, vol. 44, 102025.

    Google Scholar 

  43. Y. Koizumi, S. Suzuki, K. Yamanaka, B. Lee, K. Sato, Y. Li, S. Kurosu, H. Matsumoto, and A. Chiba: Acta Mater., 2013, vol. 61, pp. 1648–61.

    Article  CAS  Google Scholar 

  44. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Today, 1998, vol. 1, pp. 14–5.

    Article  Google Scholar 

  45. Y. Kajima, A. Takaichi, N. Kittikundecha, T. Nakamoto, T. Kimura, N. Nomura, A. Kawasaki, T. Hanawa, H. Takahashi, and N. Wakabayashi: Mater. Sci. Eng. A, 2018, vol. 726, pp. 21–31.

    Article  CAS  Google Scholar 

  46. K. Rajan: Metall. Trans. A, 1984, vol. 15, pp. 1335–38.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the experimental support of F.E. Montoro, Dr. O.R. Ospina and Dr. V. Mogili at the Brazilian Nanotechnology National Laboratory. The authors are grateful for the support provided by L. Wu during the synchrotron experiments (project Nr. 20180228) at the Brazilian Synchrotron Light Laboratory, part of the Brazilian Centre for Research in Energy and Materials (CNPEM), a private non-profit organization under the supervision of the Brazilian Ministry for Science, Technology, and Innovations (MCTI). L. Novotný acknowledges the financial support provided by Provincia Autonoma di Bolzano/Alto Adige—Ripartizione Innovazione, Ricerca, Università e Musei—projects HI-TECH MANUFACTURING (CUP codex I59C20000040003) and PREDICT (CUP codex I53C22002100003). This research used facilities of the Brazilian Nanotechnology National Laboratory (LNNano), part of the CNPEM, projects Nr.: SEM-C1-27387 and TEMM-C1-27373. A portion of the microstructural characterization was performed at the Central Analítica UFC/CT-INFRA-FINEP/Pro-Equipamentos-CAPES/CNPq-SisNano-MCTI 2019 (Grant 442577/2019-2)-INCT-FUNCAP. Authors acknowledge financial support by CRC 2021 project “Integrating Physics-Based and Data-Driven Modelling for Efficient Process Parameters, Material Design and Optimisation in Additive Manufacturing for Industry 4.0”. This work was partially financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil, Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. M. Antunes.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes, L.H.M., Béreš, M., Hoyos, J.J. et al. Kinetics of FCC to HCP Transformation During Aging Heat Treatment of Co–28Cr–6Mo Alloy Fabricated by Laser-Powder Bed Fusion. Metall Mater Trans A 54, 2329–2339 (2023). https://doi.org/10.1007/s11661-023-07016-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07016-w

Navigation