Skip to main content
Log in

A Molecular Dynamics Study on the Local Structure of Al90Sm10 Marginal Metallic Glass and Liquid

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Publisher Correction to this article was published on 19 June 2023

This article has been updated

Abstract

The liquid and the amorphous Al90Sm10 marginal metallic glassy alloy are investigated using Molecular Dynamics. The Al90Sm10 system consisting of 32,000 atoms is simulated under the constant number of atoms, pressure, and temperature (NPT) ensemble where the temperature and pressure are controlled via Nose–Hoover thermostat and barostat, respectively. The corresponding liquid model is initially held at 2300 K; then, the liquid is continuously cooled down to 300 K with a constant cooling rate of 1010 Ks−1, during which representative structures were obtained at each 200 K intervals. At every critical interval, radial distribution functions and structure factors are calculated. Local structural arrangements are analyzed using the Voronoi tessellation technique. These analyses indicate a chemically inhomogeneous liquid structure with large pure Al regions divided by a network of Sm-rich clusters, due to the high correlation of Al atoms at high temperatures. As the temperature of the liquid decreases, the amount of Al correlated with Sm in the first shell neighborhood increases. This makes the pure Al regions become smaller in size and widely separated. These pure Al regions in the amorphous solid are thought to be the possible nucleation sites for fcc-Al nanocrystals observed upon the devitrification of marginal metallic glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. W. Klement Jun, R.H. Willens, and P. Duwez: Nature, 1960, vol. 187, pp. 869–70. https://doi.org/10.1038/187869b0.

    Article  Google Scholar 

  2. P. Chaudhari and D. Turnbull: Science, 1978, vol. 199, pp. 11–21. https://doi.org/10.1126/science.199.4324.11.

    Article  CAS  Google Scholar 

  3. H.S. Chen: Rep. Prog. Phys., 1980, vol. 43, pp. 353–432. https://doi.org/10.1088/0034-4885/43/4/001.

    Article  Google Scholar 

  4. A.L. Greer: Science, 1995, vol. 267, pp. 1947–53. https://doi.org/10.1126/science.267.5206.1947.

    Article  CAS  Google Scholar 

  5. A.L. Greer and E. Ma: MRS Bull., 2007, vol. 32, pp. 611–19. https://doi.org/10.1557/mrs2007.121.

    Article  CAS  Google Scholar 

  6. A.L. Greer: Mater. Today (Kidlington), 2009, vol. 12, pp. 14–22. https://doi.org/10.1016/S1369-7021(09)70037-9.

    Article  CAS  Google Scholar 

  7. A. Inoue: Acta Mater., 2000, vol. 48, pp. 279–306. https://doi.org/10.1016/S1359-6454(99)00300-6.

    Article  CAS  Google Scholar 

  8. A. Inoue and A. Takeuchi: Mater. Trans., 2002, vol. 43, pp. 1892–906. https://doi.org/10.2320/matertrans.43.1892.

    Article  CAS  Google Scholar 

  9. W.L. Johnson: MRS Bull., 1999, vol. 24, pp. 42–56. https://doi.org/10.1557/S0883769400053252.

    Article  CAS  Google Scholar 

  10. W.L. Johnson: JOM (1989), 2002, vol. 54, pp. 40–3. https://doi.org/10.1007/BF02822619.

    Article  CAS  Google Scholar 

  11. J.F. Löffler: Intermetallics (Barking), 2003, vol. 11, pp. 529–40. https://doi.org/10.1016/S0966-9795(03)00046-3.

    Article  CAS  Google Scholar 

  12. W.H. Wang, C. Dong, and C.H. Shek: Mater. Sci. Eng. R, 2004, vol. 44, pp. 45–89. https://doi.org/10.1016/j.mser.2004.03.001.

    Article  CAS  Google Scholar 

  13. Y.Q. Cheng and E. Ma: Prog. Mater. Sci., 2011, vol. 56, pp. 379–473. https://doi.org/10.1016/j.pmatsci.2010.12.002.

    Article  CAS  Google Scholar 

  14. A. Inoue, A. Kitamura, and T. Masumoto: J. Mater. Sci., 1981, vol. 16, pp. 1895–908. https://doi.org/10.1007/BF00540638.

    Article  CAS  Google Scholar 

  15. Y. He, S.J. Poon, and G.J. Shiflet: Science, 1988, vol. 241, pp. 1640–42. https://doi.org/10.1126/science.241.4873.1640.

    Article  CAS  Google Scholar 

  16. A. Inoue, K. Ohtera, A.-P. Tsai, and T. Masumoto: Jpn. J. Appl. Phys., 1988, vol. 27, pp. L280-282. https://doi.org/10.1143/jjap.27.l280.

    Article  CAS  Google Scholar 

  17. T. Demirtaş and Y.E. Kalay: J. Non Cryst. Solids, 2013, vol. 378, pp. 71–8. https://doi.org/10.1016/j.jnoncrysol.2013.06.020.

    Article  CAS  Google Scholar 

  18. Y.E. Kalay, L.S. Chumbley, and I.E. Anderson: Mater. Sci. Eng. A, 2008, vol. 490, pp. 72–80. https://doi.org/10.1016/j.msea.2008.02.032.

    Article  CAS  Google Scholar 

  19. Y.E. Kalay, I. Kalay, J. Hwang, P.M. Voyles, and M.J. Kramer: Acta Mater., 2012, vol. 60, pp. 994–1003. https://doi.org/10.1016/j.actamat.2011.11.008.

    Article  CAS  Google Scholar 

  20. Y.E. Kalay, L.S. Chumbley, and I.E. Anderson: J. Non-Cryst. Solids, 2008, vol. 354, pp. 3040–48. https://doi.org/10.1016/j.jnoncrysol.2007.12.006.

    Article  CAS  Google Scholar 

  21. Y.E. Kalay, C. Yeager, L.S. Chumbley, M.J. Kramer, and I.E. Anderson: J. Non-Cryst. Solids, 2010, vol. 356, pp. 1416–24. https://doi.org/10.1016/j.jnoncrysol.2010.05.005.

    Article  CAS  Google Scholar 

  22. Y.E. Kalay, L.S. Chumbley, M.J. Kramer, and I.E. Anderson: Intermetallics, 2010, vol. 18, pp. 1676–82. https://doi.org/10.1016/j.intermet.2010.05.005.

    Article  CAS  Google Scholar 

  23. M. Ovun, M.J. Kramer, and Y.E. Kalay: J. Non Cryst. Solids, 2014, vol. 405, pp. 27–32. https://doi.org/10.1016/j.jnoncrysol.2014.08.037.

    Article  CAS  Google Scholar 

  24. N. Wang, Y.E. Kalay, and R. Trivedi: Acta Mater., 2011, vol. 59, pp. 6604–19. https://doi.org/10.1016/j.actamat.2011.07.015.

    Article  CAS  Google Scholar 

  25. T.B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker: Binary alloy phase diagrams, ASM International, Ohio, 1986.

    Google Scholar 

  26. A. Inoue: Mater. Trans. JIM, 1995, vol. 36, pp. 866–75. https://doi.org/10.2320/matertrans1989.36.866.

    Article  CAS  Google Scholar 

  27. A. Inoue: Prog. Mater. Sci., 1998, vol. 43, pp. 365–520. https://doi.org/10.1016/S0079-6425(98)00005-X.

    Article  CAS  Google Scholar 

  28. C. Yildirim, M. Kutsal, R.T. Ott, M.F. Besser, M.J. Kramer, and Y.E. Kalay: Mater. Des., 2016, vol. 112, pp. 479–84. https://doi.org/10.1016/j.matdes.2016.09.060.

    Article  CAS  Google Scholar 

  29. T.H. Ulucan, I. Kalay, and Y.E. Kalay: Metall. Mater. Trans. A, 2021, vol. 52, pp. 700–10. https://doi.org/10.1007/s11661-020-06111-6.

    Article  CAS  Google Scholar 

  30. H.Y. Hsieh, T. Egami, Y. He, S.J. Poon, and G.J. Shiflet: J. Non-Cryst. Solids, 1991, vol. 135, pp. 248–54. https://doi.org/10.1016/0022-3093(91)90427-8.

    Article  CAS  Google Scholar 

  31. Y. Sun, Y. Zhang, F. Zhang, Z. Ye, Z. Ding, C.-Z. Wang, and K.-M. Ho: J. Appl. Phys., 2016, vol. 120, p. 015901. https://doi.org/10.1063/1.4955223.

    Article  CAS  Google Scholar 

  32. Y. Sun, F. Zhang, L. Yang, H. Song, M.I. Mendelev, C.-Z. Wang, and K.-M. Ho: Phys. Rev. Mater., 2019, vol. 3, p. 023404. https://doi.org/10.1103/PhysRevMaterials.3.023404.

    Article  CAS  Google Scholar 

  33. J. Wang, A. Agrawal, and K. Flores: Acta Mater., 2019, vol. 171, pp. 163–69. https://doi.org/10.1016/j.actamat.2019.04.001.

    Article  CAS  Google Scholar 

  34. M.-H. Yang, B. Cai, Y. Sun, F. Zhang, Y.-F. Wang, C.-Z. Wang, and K.-M. Ho: Phys. Rev. Mater., 2019, vol. 3, p. 125602. https://doi.org/10.1103/PhysRevMaterials.3.125602.

    Article  CAS  Google Scholar 

  35. D. Choudhuri and B.S. Majumdar: Materialia, 2020, vol. 12, p. 100816. https://doi.org/10.1016/j.mtla.2020.100816.

    Article  CAS  Google Scholar 

  36. S. Plimpton: J. Comput. Phys., 1995, vol. 117, pp. 1–9. https://doi.org/10.1006/jcph.1995.1039.

    Article  CAS  Google Scholar 

  37. A.P. Thompson, S.J. Plimpton, and W. Mattson: J. Chem. Phys., 2009, vol. 131, p. 154107. https://doi.org/10.1063/1.3245303.

    Article  CAS  Google Scholar 

  38. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in ‘t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, and S.J. Plimpton: Comput. Phys. Commun., 2022, vol. 271, p. 108171. https://doi.org/10.1016/j.cpc.2021.108171.

    Article  CAS  Google Scholar 

  39. M.I. Mendelev, F. Zhang, Z. Ye, Y. Sun, M.C. Nguyen, S.R. Wilson, C.Z. Wang, and K.M. Ho: Model. Simul Mat. Sci. Eng., 2015, vol. 23, p. 045013. https://doi.org/10.1088/0965-0393/23/4/045013.

    Article  CAS  Google Scholar 

  40. S. Nosé: J. Chem. Phys., 1984, vol. 81, pp. 511–19. https://doi.org/10.1063/1.447334.

    Article  Google Scholar 

  41. W.G. Hoover: Phys. Rev. A, 1985, vol. 31, pp. 1695–97. https://doi.org/10.1103/PhysRevA.31.1695.

    Article  CAS  Google Scholar 

  42. T.E. Faber and J.M. Ziman: Philos. Mag., 1965, vol. 11, pp. 153–73. https://doi.org/10.1080/14786436508211931.

    Article  CAS  Google Scholar 

  43. E. Prince: International tables for crystallography: mathematical, physical and chemical tables, International Union of Crystallography, Chester, 2006. https://doi.org/10.1107/97809553602060000103.

    Book  Google Scholar 

  44. C.H. Rycroft: Chaos, 2009, vol. 19, p. 041111. https://doi.org/10.1063/1.3215722.

    Article  Google Scholar 

  45. J. Park and Y. Shibutani: Mater. Trans., 2006, vol. 47, pp. 2904–09. https://doi.org/10.2320/matertrans.47.2904.

    Article  CAS  Google Scholar 

  46. J.M. Haile: Molecular dynamics simulation: elementary methods, Wiley, Hoboken, 1992.

    Google Scholar 

  47. T. Egami and S. Billinge: Underneath the bragg peaks: structural analysis of complex materials. Pergamon materials series, Elsevier Science, Amsterdam, 2003.

    Book  Google Scholar 

  48. S.P. Pan, J.Y. Qin, W.M. Wang, and T.K. Gu: Phys. Rev. B, 2011, vol. 84, p. 092201. https://doi.org/10.1103/PhysRevB.84.092201.

    Article  CAS  Google Scholar 

  49. K. Zhang, H. Li, L. Li, and X.F. Bian: Appl. Phys. Lett., 2013, vol. 102, p. 071907. https://doi.org/10.1063/1.4793187.

    Article  CAS  Google Scholar 

  50. Y.-C. Liang, R.-S. Liu, Y.-F. Mo, H.-R. Liu, Z.-A. Tian, Q.-Y. Zhou, H.-T. Zhang, L.-L. Zhou, Z.-Y. Hou, and P. Peng: J. Alloys Compd., 2014, vol. 597, pp. 269–74. https://doi.org/10.1016/j.jallcom.2014.01.052.

    Article  CAS  Google Scholar 

  51. H. Tanaka: Eur. Phys. J. E, 2012, vol. 35, p. 113. https://doi.org/10.1140/epje/i2012-12113-y.

    Article  CAS  Google Scholar 

  52. S.Y. Wang, C.Z. Wang, M.Z. Li, L. Huang, R.T. Ott, M.J. Kramer, D.J. Sordelet, and K.M. Ho: Phys. Rev. B, 2008, vol. 78, p. 184204. https://doi.org/10.1103/PhysRevB.78.184204.

    Article  CAS  Google Scholar 

  53. S.R. Elliott: Nature, 1991, vol. 354, pp. 445–52. https://doi.org/10.1038/354445a0.

    Article  CAS  Google Scholar 

  54. Q. Jingyu, B. Xiufang, S.I. Sliusarenko, and W. Weimin: J. Phys. Condens. Matter., 1998, vol. 10, pp. 1211–18. https://doi.org/10.1088/0953-8984/10/6/004.

    Article  CAS  Google Scholar 

  55. M. Maret, T. Pomme, A. Pasturel, and P. Chieux: Phys. Rev. B, 1990, vol. 42, pp. 1598–604. https://doi.org/10.1103/PhysRevB.42.1598.

    Article  CAS  Google Scholar 

  56. M. Sakata, N. Cowlam, and H.A. Davies: J. Phys., 1979, vol. 9, pp. L235-240. https://doi.org/10.1088/0305-4608/9/12/001.

    Article  CAS  Google Scholar 

  57. S. Trady, M. Mazroui, A. Hasnaoui, and K. Saadouni: J. Non Cryst. Solids, 2016, vol. 443, pp. 136–42. https://doi.org/10.1016/j.jnoncrysol.2016.04.004.

    Article  CAS  Google Scholar 

  58. G. Voronoi: J. Reine Angew. Math., 1908, vol. 1908, pp. 198–287. https://doi.org/10.1515/crll.1908.134.198.

    Article  Google Scholar 

  59. J. Hwang, Z.H. Melgarejo, Y.E. Kalay, I. Kalay, M.J. Kramer, D.S. Stone, and P.M. Voyles: Phys. Rev. Lett., 2012, vol. 108, p. 195505. https://doi.org/10.1103/PhysRevLett.108.195505.

    Article  CAS  Google Scholar 

  60. G.B. Bokas, L. Zhao, J.H. Perepezko, and I. Szlufarska: Scripta Mater., 2016, vol. 124, pp. 99–102. https://doi.org/10.1016/j.scriptamat.2016.06.045.

    Article  CAS  Google Scholar 

  61. Q. Zhang, J. Li, X. Hu, S. Tang, Z. Wang, and J. Wang: J. Non Cryst. Solids, 2022, vol. 588, p. 121637. https://doi.org/10.1016/j.jnoncrysol.2022.121637.

    Article  CAS  Google Scholar 

  62. S. Mishra and S. Pal: J. Non Cryst. Solids, 2018, vol. 500, pp. 249–59. https://doi.org/10.1016/j.jnoncrysol.2018.08.006.

    Article  CAS  Google Scholar 

  63. H. Tanaka: J. Phys. Condens. Matter, 2003, vol. 15, pp. L491-498. https://doi.org/10.1088/0953-8984/15/31/102.

    Article  CAS  Google Scholar 

  64. D.B. Miracle: Nat. Mater., 2004, vol. 3, pp. 697–702. https://doi.org/10.1038/nmat1219.

    Article  CAS  Google Scholar 

  65. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma: Nature, 2006, vol. 439, pp. 419–25. https://doi.org/10.1038/nature0442.

    Article  CAS  Google Scholar 

  66. J. Ding, Y. Cheng, and E. Ma: Acta Mater., 2013, vol. 61, pp. 3130–40. https://doi.org/10.1016/j.actamat.2013.02.004.

    Article  CAS  Google Scholar 

  67. J. Ding, Y.-Q. Cheng, and E. Ma: Acta Mater., 2014, vol. 69, pp. 343–54. https://doi.org/10.1016/j.actamat.2014.02.005.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-20-1-0261. The numerical calculations reported in this study were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. E. Kalay.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarıtürk, D., Kalay, Y.E. A Molecular Dynamics Study on the Local Structure of Al90Sm10 Marginal Metallic Glass and Liquid. Metall Mater Trans A 54, 2320–2328 (2023). https://doi.org/10.1007/s11661-023-07015-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07015-x

Navigation