Skip to main content
Log in

A Novel Thermal–Mechanical Processing Route for Improving the Microstructural Homogeneity of High-Speed Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fine carbide particles are desirable for balancing the hardness-toughness tradeoff of high-speed steels (HSSs). The conventional processing method, i.e., carbide decomposition and spheroidization followed by heavy deformation, usually requires high heating temperature and large plastic strain for the carbide refinement. The present work has proposed a novel thermal–mechanical processing route, which employs a high-temperature pre-deformation step instead of the post-deformation. The results show that pre-deformation is both thermodynamically and kinetically favorable for the following carbide decomposition and spheroidization owing to the introduction of dislocations and stacking faults into primary carbides. Compared with the conventional method, the new route produces smaller carbides and causes higher hardness and wear resistance. This finding may provide an alternate pathway for the reduction of heating temperature and plastic strain while guaranteeing the microstructural homogeneity of HSSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. K. Fukaura, Y. Yokoyama, D. Yokoi, N. Tsujii, and K. Ono: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1289–300.

    Article  CAS  Google Scholar 

  2. H. Fredriksson, M. Hillert, and M. Nica: Scand. J. Metall, 1973, vol. 8, pp. 115–22.

    Google Scholar 

  3. S. Lee, C.G. Lee, K.S. Sohn, and B.I. Jung: Metall. Mater. Trans. A, 1998, vol. 28A, pp. 123–34.

    Google Scholar 

  4. F.S. Pan, W.Q. Wang, A.T. Tang, L.Z. Wu, T.T. Liu, and R.J. Cheng: Prog. Nat. Sci, 2011, vol. 21, pp. 180–86.

    Article  Google Scholar 

  5. E.S. Lee, W.J. Park, J.Y. Jung, and S. Ahn: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1395–404.

    Article  CAS  Google Scholar 

  6. M.R. Ghomashchi: Acta Mater, 1998, vol. 46, pp. 5207–220.

    Article  CAS  Google Scholar 

  7. T.V. Pirtovsek, G. Kugler, and M. Tercelj: Mater. Charact, 2013, vol. 83, pp. 97–108.

    Article  CAS  Google Scholar 

  8. M.R. Ghomashchi and C.M. Sellars: Metall. Mater. Trans. A, 1992, vol. 24A, pp. 2171–180.

    Google Scholar 

  9. Y. Tian, O.I. Gorbatov, A. Borgenstam, A.V. Ruban, and P. Hedstrom: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1–7.

    Article  Google Scholar 

  10. S. Kasai, S. Ukai, T. Yamashiro, S. Zhang, N. Oono, S. Hayashi, S. Ohtsuka, and H. Sakasegawa: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 590–600.

    Article  Google Scholar 

  11. X.F. Zhou, Z.X. Zheng, W.C. Zhang, F. Fang, Y.Y. Tu, and J.Q. Jiang: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 568–73.

    Article  Google Scholar 

  12. P. Wanjara, M. Jahazi, H. Monajati, S. Yue, and J.P. Immarigeon: Mater. Sci. Eng. A, 2005, vol. 396, pp. 50–60.

    Article  Google Scholar 

  13. X.F. Zhou, D. Liu, W.L. Zhu, F. Fang, Y.Y. Tu, and J.Q. Jiang: J. Iron Steel Res. Int., 2017, vol. 24, pp. 43–9.

    Article  Google Scholar 

  14. H.S. Joo, S.K. Hwang, H.M. Baek, Y.T. Im, I.H. Son, and C.M. Bae: J. Mater. Process. Technol, 2015, vol. 216, pp. 348–56.

    Article  CAS  Google Scholar 

  15. H.J. McQueen and C.A.C. Imbert: J. Alloy Compd, 2004, vol. 378, pp. 35–43.

    Article  CAS  Google Scholar 

  16. N.D. Leon, B. Wang, C.R. Weinberger, L.E. Matson, and G.B. Thompson: Acta Mater, 2013, vol. 61, pp. 3905–913.

    Article  Google Scholar 

  17. C. Kim, G. Gottstein, and D.S. Grummon: Acta Metall. Mater, 1994, vol. 42, pp. 2291–301.

    Article  CAS  Google Scholar 

  18. X.F. Zhou, W.C. Zhang, Z.X. Zheng, D. Liu, F. Fang, Y.Y. Tu, and J.Q. Jiang: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 3553–564.

    Google Scholar 

  19. E.S. Lee, W.J. Park, K.H. Baik, and S. Ahn: Scr. Mater, 1998, vol. 39, pp. 1133–138.

    Article  CAS  Google Scholar 

  20. H.S. Di, X.M. Zhang, G.D. Wang, and X.H. Liu: J. Mater. Process. Technol, 2005, vol. 166, pp. 359–63.

    Article  CAS  Google Scholar 

  21. B. Zhou, Y. Shen, J. Chen, and Z.S. Cui: J. Iron Steel Res. Int., 2011, vol. 18, pp. 41–8.

    Article  CAS  Google Scholar 

  22. J. W. Christian: Pergamon Press, Oxford, 1965.

Download references

Acknowledgments

The authors gratefully acknowledge the support from the Key Research Program of Jiangsu Province of China (Project Number BE2022144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 14, 2022; accepted January 14, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Sun, C., Zhang, W. et al. A Novel Thermal–Mechanical Processing Route for Improving the Microstructural Homogeneity of High-Speed Steel. Metall Mater Trans A 54, 1042–1053 (2023). https://doi.org/10.1007/s11661-023-06977-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-06977-2

Navigation