Skip to main content
Log in

Al2O3 Regions/Grains in ODS Steel PM2000 Irradiated With Fe Ions at 700 °C

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Oxide dispersion strengthened (ODS) steel is one of the candidate structural materials for Generation-IV nuclear reactors. The microstructure of as-rolled PM2000 steel irradiated with 3.5 MeV Fe13+ ions at 700 °C to 0.75 dpa was studied using transmission electron microscopy in combination with the microstructure of the unirradiated steel. In difference to unirradiated steel, white blocky regions appeared in the irradiated steel and were identified to belong to Al2O3 oxide with a base-centered monoclinic crystal structure. The irradiation induced the formation of the Al2O3 regions in the steel. Segregation of alloy elements in the irradiated steel, characterized by Ti enrichment at the Al2O3/Fe interface, was observed. Three types of dispersed phases were found in the Al2O3 regions, respectively: Fe-rich M7C3 and Cr-rich M7C3 carbides with a simple orthorhombic lattice, and Y3Al5O12 oxide with an orthorhombic structure. Fe-rich M7C3 and Cr-rich M7C3 carbides were irradiation-induced precipitates. In order to better evaluate the Al2O3 layer on the surface of ODS steel under irradiation conditions, it is more reasonable to study the Al2O3 layer grown on the steel surface during irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Abram and S. Ion: Energy Policy, 2008, vol. 36, pp. 4323–30.

    Article  Google Scholar 

  2. K.L. Murty and I. Charit: J. Nucl. Mater., 2008, vol. 383, pp. 189–95.

    Article  CAS  Google Scholar 

  3. S. Ukai and M. Fujiwara: J. Nucl. Mater., 2002, vol. 307–11, pp. 749–57.

    Article  Google Scholar 

  4. J.P. Wharry, M.J. Swenson, and K.H. Yano: J. Nucl. Mater., 2017, vol. 486, pp. 11–20.

    Article  CAS  Google Scholar 

  5. M. Šćepanović, T. Leguey, M.A. Auger, S. Lozano-Perez, D.E.J. Armstrong, I. García-Cortés, and V. de Castro: Mater. Charact., 2018, vol. 136, pp. 318–30.

    Article  Google Scholar 

  6. M. Šćepanović, V. de Castro, I. García-Cortés, F.J. Sánchez, T. Gigl, C. Hugenschmidt, and T. Leguey: J. Nucl. Mater., 2020, vol. 538, p. 152230.

    Article  Google Scholar 

  7. C.Z. Yu, H. Oka, N. Hashimoto, and S. Ohnuki: J. Nucl. Mater., 2011, vol. 417, pp. 286–88.

    Article  CAS  Google Scholar 

  8. K. Kondo, S. Aoki, S. Yamashita, S. Ukai, K. Sakamoto, M. Hirai, and A. Kimura: Nucl. Mater. Energy, 2018, vol. 15, pp. 13–16.

    Article  Google Scholar 

  9. C.H. Zhang, Y.T. Yang, Y. Song, J. Chen, L.Q. Zhang, J. Jang, and A. Kimura: J. Nucl. Mater., 2014, vol. 455, pp. 61–67.

    Article  CAS  Google Scholar 

  10. M. Šćepanović, V. de Castro, T. Gigl, M.A. Auger, S. Lozano-Perez, and R. Pareja: Nucl. Mater. Energy, 2016, vol. 9, pp. 490–95.

    Article  Google Scholar 

  11. R. Gao, B. Cheng, L.F. Zeng, S. Miao, J. Hou, T. Zhang, X.P. Wang, Q.F. Fang, and C.S. Liu: J. Alloys Compd., 2017, vol. 691, pp. 653–58.

    Article  CAS  Google Scholar 

  12. M.A. Auger, D.T. Hoelzer, K.G. Field, and M.P. Moody: J. Nucl. Mater., 2020, vol. 528, 151852.

    Article  CAS  Google Scholar 

  13. M. Klimenkov, U. Jäntsch, M. Rieth, M. Dürrschnabel, A. Möslang, and H.C. Schneider: J. Nucl. Mater., 2021, vol. 557, 153259.

    Article  CAS  Google Scholar 

  14. M. Šćepanović, T. Leguey, I. García-Cortés, F.J. Sánchez, C. Hugenschmidt, M.A. Auger, and V. de Castro: Nucl. Mater. Energy, 2020, vol. 25.

  15. H. Yu, H.R. Wang, S. Kondo, Y. Okuno, R. Kasada, N. Oono-Hori, and S. Ukai: Nucl. Mater. Energy, 2021, vol. 29, 101102.

    Article  CAS  Google Scholar 

  16. K.A. Terrani, S.J. Zinkle, and L.L. Snead: J. Nucl. Mater., 2014, vol. 448, pp. 420–35.

    Article  CAS  Google Scholar 

  17. S. Takaya, T. Furukawa, K. Aoto, G. Muller, A. Weisenburger, A. Heinzel, M. Inoue, T. Okuda, F. Abe, S. Ohnuki, T. Fujisawa, and A. Kimura: J. Nucl. Mater., 2009, vol. 386–88, pp. 507–10.

    Article  Google Scholar 

  18. P. Hosemann, H.T. Thau, A.L. Johnson, S.A. Maloy, and N. Li: J. Nucl. Mater., 2008, vol. 373, pp. 246–53.

    Article  CAS  Google Scholar 

  19. Z.G. Zhang, F. Gesmundo, P.Y. Hou, and Y. Niu: Corrosion Sci, 2006, vol. 48, pp. 741–65.

    Article  CAS  Google Scholar 

  20. S.J. Zinkle and G.S. Was: Acta Mater., 2013, vol. 61, pp. 735–58.

    Article  CAS  Google Scholar 

  21. G.S. Was, D. Petti, S. Ukai, and S. Zinkle: J. Nucl. Mater., 2019, vol. 527, 151837.

    Article  CAS  Google Scholar 

  22. C. Wagner: Corrosion Sci, 1965, vol. 5, pp. 751–64.

    Article  CAS  Google Scholar 

  23. S. Xu, Z.J. Zhou, H.D. Jia, and Z.W. Yao: Steel Res. Int., 2019, vol. 90, p. 1800594.

    Article  Google Scholar 

  24. C.L. Chen, A. Richter, R. Kogler, and G. Talut: J. Nucl. Mater., 2011, vol. 412, pp. 350–58.

    Article  CAS  Google Scholar 

  25. C.L. Chen, A. Richter, and R. Kogler: J. Alloys Compd., 2014, vol. 586, pp. S173–79.

    Article  CAS  Google Scholar 

  26. R. Köglera, W. Anwand, A. Richter, M. Butterling, X. Ou, A. Wagner, and C.L. Chen: J. Nucl. Mater., 2012, vol. 427, pp. 133–39.

    Article  Google Scholar 

  27. H.J. Jung, D.J. Edwards, R.J. Kurtz, T. Yamamoto, Y. Wu, and G.R. Odette: J. Nucl. Mater., 2017, vol. 484, pp. 68–80.

    Article  CAS  Google Scholar 

  28. G.L. Liu: Acta Phys. Sin.-Ch. Ed., 2010, vol. 59, pp. 494–98.

    Article  CAS  Google Scholar 

  29. G.Y. Zhang, R. Chu, H. Zhang, and C.M. Liu: Adv. Mater. Res., 2013, vol. 853, pp. 192–97.

    Article  Google Scholar 

  30. J. Ren, L.M. Yu, C.X. Liu, Z.Q. Ma, H.J. Li, Z.M. Wang, Y.C. Liu, and H. Wang: Corrosion Sci., 2022, vol. 195, 110008.

    Article  CAS  Google Scholar 

  31. Y.Z. Shen, T.T. Zou, S. Zhang, and L.Z. Sheng: ISIJ Int., 2013, vol. 53, pp. 304–10.

    Article  CAS  Google Scholar 

  32. R.S. Nelson, J.A. Hudson, and D.J. Mazey: J. Nucl. Mater., 1972, vol. 44, pp. 318–30.

    Article  CAS  Google Scholar 

  33. I. Monnet, T. Van den Berghe, and P. Dubuisson: J. Nucl. Mater., 2012, vol. 424, pp. 204–09.

    Article  CAS  Google Scholar 

  34. I. Monnet, P. Dubuisson, Y. Serruys, M.O. Ruault, O. Kaïtasov, and B. Jouffrey: J. Nucl. Mater., 2004, vol. 335, pp. 311–21.

    Article  CAS  Google Scholar 

  35. T.R. Allen, J. Gan, J.I. Cole, M.K. Miller, J.T. Busby, S. Shutthanandan, and S. Thevuthasan: J. Nucl. Mater., 2008, vol. 375, pp. 26–37.

    Article  CAS  Google Scholar 

  36. G.S. Was, J.P. Wharry, B. Frisbie, B.D. Wirth, D. Morgan, J.D. Tucker, and T.R. Allen: J. Nucl. Mater., 2011, vol. 411, pp. 41–50.

    Article  CAS  Google Scholar 

  37. P.R. Okamoto and L.E. Rehn: J. Nucl. Mater., 1979, vol. 83, pp. 2–3.

    Article  CAS  Google Scholar 

  38. J.C. He, F.R. Wan, K. Sridharan, T.R. Allen, A. Certain, and Y.Q. Wu: J. Nucl. Mater., 2014, vol. 452, pp. 87–94.

    Article  CAS  Google Scholar 

  39. J. Wang, M.B. Toloczko, V.N. Voyevodin, V.V. Bryk, O.V. Borodin, V.V. Mel’nychenko, A.S. Kalchenko, F.A. Garner, and L. Shao: J. Nucl. Mater., 2021, vol. 545, 152528.

    Article  CAS  Google Scholar 

  40. C.C. Montes and H. Bhadeshia: Adv. Eng. Mater., 2003, vol. 5, pp. 232–37.

    Article  CAS  Google Scholar 

  41. C. Yang, B. Feng, J. Wei, E. Tochigi, S. Ishihara, N. Shibata, and Y. Ikuhara: Acta Mater., 2020, vol. 201, pp. 488–93.

    Article  CAS  Google Scholar 

  42. H. Yoshida, K. Hiraga, and T. Yamamoto: Mater. Trans., 2009, vol. 50, pp. 1032–36.

    Article  CAS  Google Scholar 

  43. H. Unno, Y. Sato, S. Toh, N. Yoshinaga, and S. Matsumura: J. Electron Microsc., 2010, vol. 59, pp. S107-115.

    Article  CAS  Google Scholar 

  44. A. Kebbede and A.H. Carim: Mater. Lett., 1999, vol. 41, pp. 198–203.

    Article  CAS  Google Scholar 

  45. H.N. Xie, N.Q. Zhao, C.S. Shi, C.N. He, and E.Z. Liu: Comput. Mater. Sci., 2021, vol. 188, 110226.

    Article  CAS  Google Scholar 

  46. Y. Wang, J. Lin, B.C. Liu, Y.F. Chen, D.H. Li, H. Wang, and Y.Z. Shen: Philos. Mag., 2021, vol. 101, pp. 2514–27.

    Article  CAS  Google Scholar 

  47. Z.B. Zhang and W. Pantleon: Philos. Mag., 2017, vol. 97, pp. 1824–46.

    Article  CAS  Google Scholar 

  48. T.B. Massalsky, H. Okamoto, P.R. Subramanian, and L. Kacprzac: Binary Alloy Phase Diagrams, 2nd ed. Materials Park, ASM International, 1990, p. 1273.

    Google Scholar 

  49. V.A. Bis and T. Wada: Metall. Trans. A, 1985, vol. 16, pp. 109–14.

    Article  Google Scholar 

  50. E. Skołek, S. Marciniak, and W. Świątnicki: Arch. Metall. Mater., 2015, vol. 60, pp. 503–09.

    Article  Google Scholar 

  51. G.R. Speich and W.C. Leslie: Tempering of steel. Metall. Trans., 1972, vol. 3, pp. 1043–54.

    Article  CAS  Google Scholar 

  52. Y. Yoshimoto, M. Yonemura, S.-I. Takakura, and M. Nakatake: Metall. Mater. Trans. A, 2019, vol. 50, pp. 4435–44.

    Article  CAS  Google Scholar 

  53. H. Yu, S. Kondo, R. Kasada, N. Oono, S. Hayashi, and S. Ukai: Nucl. Mater. Energy, 2020, vol. 25, 100798.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the State Key Program of National Natural Science Foundation of China (51034011) and ITER-National Magnetic Confinement Fusion Program of The Department of Science and Technology of China (2011GB113001). The authors are grateful to Dr. Jinsung Jang, Nuclear Materials Research Center, Korea Atomic Energy Research Institute, for providing the steel used in this study. The authors thank the members of the group running the 320 kV platform for their assistance in the irradiation experiments and also thank Xi Huang, Qingshan Li, and Zhongxia Shang, former graduate students from Shanghai Jiao Tong University, for assistance with the sample polishing and irradiation experiments.

Conflict of interest

The authors declare that they have no competing interests related to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinzhong Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Shen, Y. Al2O3 Regions/Grains in ODS Steel PM2000 Irradiated With Fe Ions at 700 °C. Metall Mater Trans A 54, 952–961 (2023). https://doi.org/10.1007/s11661-022-06947-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06947-0

Navigation