Skip to main content
Log in

Microtwinning in Single-Crystal Nickel-Based Superalloys During Compressive Deformation at 1000 °C

  • Topical Collection: Processing and Applications of Superalloys
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Deformation modes in the directionally solidified nickel-based superalloy CM247LC and three single-crystal nickel-based superalloys PWA1483, DESC-1 (a new superalloy), René N5 oriented near the [001] direction have been studied in compression at 1000 °C and a strain rate of 2.5 × 10–4 s−1. It is found that the yield strength of the four alloys has the following trend: PWA1483 < CM247LC < DESC-1 < René N5. A transmission electron microscope was employed to characterize the substructures in the four alloys after around 2.5 pct plastic strain. We found that plastic deformation of PWA1483 and DESC-1 is dominated by stacking fault shearing and microtwinning, whereas dislocation climb, together with precipitate shearing achieved by pairs of a/2〈101〉 dislocations with the equal and dissimilar Burger vectors, governs the plastic deformation of CM247LC. As to René N5, although dislocation climb takes place frequently and microtwinning occurs occasionally, precipitate shearing involving the formation of anti-phase boundaries and single superlattice stacking faults plays an important role in the plastic deformation. Finally, on the basis of the experimental results, the connection between the alloy composition and deformation mechanisms together with the yield strength is analyzed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  2. Y.M. Eggeler, K.V. Vamsi, and T.M. Pollock: Annu. Rev. Mater. Res., 2021, vol. 51, pp. 209–40.

    Article  CAS  Google Scholar 

  3. S.M. Copley and B.H. Kear: AIME. Trans., 1967, vol. 239, pp. 984–92.

    CAS  Google Scholar 

  4. W.W. Milligan and S.D. Antolovich: Metall. Trans. A, 1987, vol. 18, pp. 85–95.

    Article  Google Scholar 

  5. W.W. Milligan and S.D. Antolovich: Metall. Trans. A, 1991, vol. 22, pp. 2309–18.

    Article  Google Scholar 

  6. M. Feller-Kniepmeier, T. Link, I. Poschmann, G. Scheunemann-Frerker, and C. Schulze: Acta Mater., 1996, vol. 44, pp. 2397–2407.

    Article  CAS  Google Scholar 

  7. F. Schubert, H.-J. Penkalla, and L. Singheiser: Int. J. Mater. Res., 2003, vol. 94, pp. 705–10.

    Article  CAS  Google Scholar 

  8. C.Y. Cui, Y.F. Gu, Y. Yuan, and H. Harada: Scripta Mater., 2011, vol. 64, pp. 502–05.

    Article  CAS  Google Scholar 

  9. P. Zhang, Y. Yuan, S.C. Shen, B. Li, R.H. Zhu, G.X. Yang, and X.L. Song: J. Alloys Compds., 2017, vol. 694, pp. 502–09.

    Article  CAS  Google Scholar 

  10. Y.F. Liu, Y.S. Zhao, C.G. Liu, Y.Y. Guo, J. Zhang, Y.S. Luo, and J.B. Sha: Mater. Sci. Technol., 2018, vol. 34, pp. 1188–96.

    Article  Google Scholar 

  11. P. Zhang, Y. Yuan, Y.F. Gu, Y.Y. Dang, J.T. Lu, X.B. Zhao, J.C. Wang, C.Z. Zhu, and C.X. Fan: Mater. Charact., 2018, vol. 142, pp. 101–08.

    Article  CAS  Google Scholar 

  12. D. Barba, A. Egan, Y. Gong, M.J. Mills, R.C. Reed: Proceedings of the 14th International Symposium on Superalloys, S. Tin, M. Hardy, J. Clews, J. Cormier, Q. Feng, J. Marcin, C. O’Brien, A. Suzuki, eds., TMS, 2020, pp. 260–72.

  13. Z.H. Tan, X.G. Wang, Y.L. Du, T.F. Duan, Y.H. Yang, J.L. Liu, J.D. Liu, L. Yang, J.G. Li, Y.Z. Zhou, and X.F. Sun: Mater. Sci. Eng. A, 2020, vol. 776, p. 138997.

    Article  CAS  Google Scholar 

  14. H. Zhang, Y. Pei, X. Gong, X. Chen, W. Zhang, P. Zhang, L. Li, Y. Liu, and Q. Wang: Mater. Charact., 2022, vol. 187, p. 111865.

    Article  CAS  Google Scholar 

  15. P. Zhang, Y. Yuan, J. Li, J.B. Yan, H. Zhang, X.B. Zhao, X.B. Shi, and Y.F. Gu: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 388–93.

    Article  Google Scholar 

  16. D. Bettge, W. Österle, and J. Ziebs: Int. J. Mater. Res., 1995, vol. 86, pp. 190–97.

    Article  CAS  Google Scholar 

  17. M. Yamashita and K. Kakehi: Scripta Mater., 2006, vol. 55, pp. 139–42.

    Article  CAS  Google Scholar 

  18. T.M. Smith, B.D. Esser, N. Antolin, A. Carlsson, R.E.A. Williams, A. Wessman, T. Hanlon, H.L. Fraser, W. Windl, D.W. McComb, and M.J. Mills: Nat. Commun., 2016, vol. 7, p. 13434.

    Article  CAS  Google Scholar 

  19. C.X. Dang, P. Zhang, J. Li, Z.H. Gao, B. Li, X.F. Gong, and X.L. Song: Mater. Charact., 2020, vol. 170, p. 110648.

    Article  CAS  Google Scholar 

  20. P. Zhang, Y. Yuan, X.B. Shi, J. Li, J.B. Yan, J.T. Lu, and Y.F. Gu: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 3699–3705.

    Article  Google Scholar 

  21. M. Nazmy, A. Künzler, J. Denk, and R. Baumann: Scripta Mater., 2002, vol. 47, pp. 521–25.

    Article  CAS  Google Scholar 

  22. T.M. Pollock, R.D. in Field: Dislocations in Solids. F.R.N. Nabarro, M.S. Duesbery (eds.), E-Publishing InC., New York, 2002, pp. 566–68.

  23. P. Lv, L. Liu, G. Zhao, S. Guo, Z. Zhou, Y. Zhao, and J. Zhang: J. Alloys Compds., 2022, vol. 926, p. 166819.

    Article  CAS  Google Scholar 

  24. C. Schwalbe, J. Cormier, C.N. Jones, E. Galindo-Nava, and C.M.F. Rae: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3988–4002.

    Article  Google Scholar 

  25. D. Barba, E. Alabort, S. Pedrazzini, D.M. Collins, A.J. Wilkinson, P.A.J. Bagot, M.P. Moody, C. Atkinson, A. Jérusalem, and R.C. Reed: Acta Mater., 2017, vol. 135, pp. 314–29.

    Article  CAS  Google Scholar 

  26. J.B. le Graverend, F. Pettinari-Sturmel, J. Cormier, M. Hantcherli, P. Villechaise, and J. Douin: Mater. Sci. Eng. A, 2018, vol. 722, pp. 76–87.

    Article  Google Scholar 

  27. J.L. Liu, T. Jin, X.F. Sun, J.H. Zhang, H.R. Guan, and Z.Q. Hu: Mater. Sci. Eng. A, 2008, vol. 479, pp. 277–84.

    Article  Google Scholar 

  28. J.J. Moverare, S. Johansson, and R.C. Reed: Acta Mater., 2009, vol. 57, pp. 2266–76.

    Article  CAS  Google Scholar 

  29. F. Sun, J. Zhang, and H. Harada: Acta Mater., 2014, vol. 67, pp. 45–57.

    Article  CAS  Google Scholar 

  30. C. Kienl, F.D. León-Cázares, and C.M.F. Rae: Acta Mater., 2022, vol. 225, p. 115743.

    Article  CAS  Google Scholar 

  31. P. Zhang, Y. Yuan, B. Li, G. Yang, and X. Song: Philos. Mag. Lett., 2016, vol. 96, pp. 238–45.

    Article  CAS  Google Scholar 

  32. L. Kovarik, R.R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang, and M.J. Mills: Prog. Mater. Sci., 2009, vol. 54, pp. 839–73.

    Article  CAS  Google Scholar 

  33. D.M. Knowles and Q.Z. Chen: Mater. Sci. Eng. A, 2003, vol. 340, pp. 88–102.

    Article  Google Scholar 

  34. R. Bonnet and D. David: Acta Metall. Mater., 1991, vol. 39, pp. 329–40.

    Article  CAS  Google Scholar 

  35. M. Benyoucef, B. Décamps, A. Coujou, and N. Clément: Philos. Mag. A, 1995, vol. 71, pp. 907–23.

    Article  CAS  Google Scholar 

  36. Y. Yuan, Y. Gu, C. Cui, T. Osada, Z. Zhong, T. Tetsui, T. Yokokawa, and H. Harada: J. Mater. Res., 2011, vol. 26, pp. 2833–37.

    Article  CAS  Google Scholar 

  37. A. Breidi, J. Allen, and A. Mottura: Acta Mater., 2018, vol. 145, pp. 97–108.

    Article  CAS  Google Scholar 

  38. K. Kakehi: Scripta Mater., 1999, vol. 41, pp. 461–65.

    Article  CAS  Google Scholar 

  39. S. Ma, L. Carroll, and T.M. Pollock: Acta Mater., 2007, vol. 55, pp. 5802–12.

    Article  CAS  Google Scholar 

  40. Y.H. Zhang, Q.Z. Chen, and D.M. Knowles: Mater. Sci. Technol., 2001, vol. 17, pp. 1551–55.

    Article  CAS  Google Scholar 

  41. P. Zhang, Y. Yuan, Z.H. Gao, J. Li, Q. Niu, X.B. Shi, Y.L. Zhou, and Y.F. Gu: Philos. Mag., 2022, vol. 102, pp. 2235–55.

    Article  CAS  Google Scholar 

  42. X.X. Yu and C.Y. Wang: Philos. Mag., 2012, vol. 92, pp. 4028–39.

    Article  CAS  Google Scholar 

  43. D.J. Crudden, A. Mottura, N. Warnken, B. Raeisinia, and R.C. Reed: Acta Mater., 2014, vol. 75, pp. 356–70.

    Article  CAS  Google Scholar 

  44. M. Dodaran, A.H. Ettefagh, S.M. Guo, M.M. Khonsari, W.J. Meng, N. Shamsaei, and S. Shao: Intermetallics, 2020, vol. 117, p. 106670.

    Article  CAS  Google Scholar 

  45. C.L. Zacherl, S.L. Shang, D.E. Kim, Y. Wang, Z.K. Liu: Proceedings of the twelfth International Symposium on Superalloys, E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, J. Telesmann, eds., TMS, 2012, pp. 455–61.

  46. R.C. Reed, C.M.F. Rae: in Physical Metallurgy, D.E. Laughlin, K. Hono, eds., Elsevier, Amsterdam, 2014, pp. 2215–90.

  47. T.M. Smith, B.D. Esser, N. Antolin, G.B. Viswanathan, T. Hanlon, A. Wessman, D. Mourer, W. Windl, D.W. Mccomb, and M.J. Mills: Acta Mater., 2015, vol. 100, pp. 19–31.

    Article  CAS  Google Scholar 

  48. K. Suzuki, M. Ichihara, and S. Takeuchi: Acta Metall., 1979, vol. 27, pp. 193–200.

    Article  CAS  Google Scholar 

  49. M.S. Titus, Y.M. Eggeler, A. Suzuki, and T.M. Pollock: Acta Mater., 2015, vol. 82, pp. 530–39.

    Article  CAS  Google Scholar 

  50. T. Link and M. Feller-Kniepmeier: Metall. Trans. A, 1992, vol. 23, pp. 99–105.

    Article  Google Scholar 

  51. G.B. Viswanathan, P.M. Sarosi, M.F. Henry, D.D. Whitis, W.W. Milligan, and M.J. Mills: Acta Mater., 2005, vol. 53, pp. 3041–57.

    Article  CAS  Google Scholar 

  52. P. Zhang, Y. Yuan, B. Li, S.W. Guo, G.X. Yang, and X.L. Song: Mater. Sci. Eng. A, 2016, vol. 655, pp. 152–59.

    Article  CAS  Google Scholar 

  53. H. Harada, M. Yamazaki, and Y. Koizumi: Tetsu-To-Hagane, 1979, vol. 65, pp. 1049–58.

    Article  CAS  Google Scholar 

  54. Y. Ro, Y. Koizumi, and H. Harada: Mater. Sci. Eng. A, 1997, vol. 223, pp. 59–63.

    Article  Google Scholar 

  55. T. Murakumo, T. Kobayashi, Y. Koizumi, and H. Harada: Acta Mater., 2004, vol. 52, pp. 3737–44.

    Article  CAS  Google Scholar 

  56. R.A. MacKay, T.P. Gabb, and M.V. Nathal: Mater. Sci. Eng. A, 2013, vol. 582, pp. 397–408.

    Article  CAS  Google Scholar 

  57. C.M.F. Rae and R.C. Reed: Acta Mater., 2007, vol. 55, pp. 1067–81.

    Article  CAS  Google Scholar 

  58. G. Eggeler and A. Dlouhy: Acta Mater., 1997, vol. 45, pp. 4251–62.

    Article  CAS  Google Scholar 

  59. R. Srinivasan, G.F. Eggeler, and M.J. Mills: Acta Mater., 2000, vol. 48, pp. 4867–78.

    Article  CAS  Google Scholar 

  60. P. Zhang, J. Li, X.F. Gong, Y. Yuan, Y.F. Gu, J.C. Wang, J.B. Yan, and H.F. Yin: Mater. Charact., 2019, vol. 148, pp. 201–07.

    Article  CAS  Google Scholar 

  61. W. Blum, B. Reppich: in Creep behavior of Crystalline Solids, B. Wilshire, R.W. Evans, eds., Pineridge Press, Swansea, 1985, pp. 83–135

  62. D. Mukherji, F. Jiao, W. Chen, and R.P. Wahi: Acta Metall. Mater., 1991, vol. 39, pp. 1515–24.

    Article  CAS  Google Scholar 

  63. M.P. Jackson and R.C. Reed: Mater. Sci. Eng. A, 1999, vol. 259, pp. 85–97.

    Article  Google Scholar 

  64. B.M.B. Grant, E.M. Francis, J. Quinta da Fonseca, M.R. Daymond, and M. Preuss: Acta Mater., 2012, vol. 60, pp. 6829–41.

    Article  CAS  Google Scholar 

  65. P. Zhang, Y. Yuan, J. Li, Y.F. Xu, X. Song, and G. Yang: Mater. Sci. Eng. A, 2017, vol. 702, pp. 343–49.

    Article  CAS  Google Scholar 

  66. J.L. Liu, T. Jin, J.J. Yu, X.F. Sun, H.R. Guan, and Z.Q. Hu: Mater. Sci. Eng. A, 2010, vol. 527, pp. 890–97.

    Article  Google Scholar 

  67. B. Du, J. Yang, C. Cui, and X. Sun: Mater. Sci. Eng. A, 2015, vol. 623, pp. 59–67.

    Article  CAS  Google Scholar 

  68. D.A. Grose and G.S. Ansell: Metall. Trans. A, 1981, vol. 12, pp. 1631–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are particularly grateful to Dr. Xianping Wei for preparing the specimens. This work was financially supported by the Natural Science Basic Research Plan in Shaanxi Province of China (Grant Nos. 2022JQ-314, 2022JQ-460), Strategic Emerging Industry Project of Sichuan Province (Grant No. SC201351010620), Research and Development Funds of Xi’an Thermal Power Research Institute Co., Ltd. (Grant No. TA-20-TYK03) and the Sichuan Province Science and Technology Support Program (Grant No. 2019ZDZX0022) as well as the Science & Technology Foundation of Huaneng Group Co, Ltd. (Grant No. HNKJ20-H41).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Zhang, Y. Yuan or Y. F. Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 525 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Yuan, Y., Li, J. et al. Microtwinning in Single-Crystal Nickel-Based Superalloys During Compressive Deformation at 1000 °C. Metall Mater Trans A 54, 1484–1495 (2023). https://doi.org/10.1007/s11661-022-06944-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06944-3

Navigation