Skip to main content
Log in

Effect of Ca Addition on the Oxidation Resistance of Ni–Al Alloy

  • Topical Collection: Processing and Applications of Superalloys
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ni-base superalloys are known for their high temperature oxidation resistance, however, impurity of S at ppm order can significantly decrease the oxidation resistance of the alloy. Melting using a CaO crucible is reported to improve the oxidation resistance, but Ca can negatively impact the oxidation resistance of the alloys, depending on the amount and method of addition. The objectives of this research were to determine the effect of Ca addition using Al–Ca alloy, and to understand how Ca affects the oxidation resistance of the alloy. Single crystal Ni–9.8 wt pct Al model alloys melted in an Al2O3 crucible were cast, with the addition of 20 ppm of S in all samples, and 0, 20, and 100 ppm of Ca using Al–4.9 wt pct Ca alloy. Ca addition improves the oxidation resistance of the samples, though it lacked in efficiency in the improvement of this trait compared to when using a CaO crucible. Increasing the amount of Ca addition led to the increase in the amount of CaS formation and desulfurization, though the removal of slag is crucial. Although Ca was effective in terms of desulfurization, to limit the negative effects of Ca itself, the formation of sulfides must be the dominating reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Harris, G.L. Erickson, S.L. Sikkenga, W.D. Brentnall, J.M. Aurrecoechea, and K.G. Kubarych: Superalloys 1992 (TMS, Seven Springs, Champion, 1992)

    Google Scholar 

  2. A.W. Fundenbusch, J.G. Smeggil, and N.S. Bornstein: Metall. Mater. Trans., 1985, vol. 16A, pp. 1164–66.

    Article  Google Scholar 

  3. Y. Ikeda, M. Tosa, K. Yoshihara, and K. Nii: ISIJ Int., 1989, vol. 29, pp. 966–72.

    Article  CAS  Google Scholar 

  4. M.A. Smith, W.E. Frazier, and B.A. Pregger: Mater. Sci. Eng. A, 1995, vol. 203, pp. 388–98.

    Article  Google Scholar 

  5. J.L. Smialek and B.A. Pint: Mater. Sci. Forum, 2001, vol. 369–372, pp. 459–66.

    Article  Google Scholar 

  6. N. Birks, G.H. Meier, and F.S. Pettit: Introduction to the High-Temperature Oxidation of Metals, 2nd ed. Cambridge University Press, New York, 2006, pp. 144–48.

    Book  Google Scholar 

  7. E. Fedorova, D. Monceau, and D. Oquab: Corr. Sci., 2010, vol. 52, pp. 3932–42.

    Article  CAS  Google Scholar 

  8. J. Smialek: Crystal, 2021, vol. 11, pp. 60–71.

    Article  CAS  Google Scholar 

  9. J.L. Smialek: Oxid. Met., 2022, vol. 97, pp. 1–50.

    Article  CAS  Google Scholar 

  10. H. Harada, K. Kawagishi, T. Kobayashi, T. Yokokawa, M. Osawa, M. Yuyama, S. Suzuki, Y. Joh, and S. Utada: US Patent, Patent Number 10689741, 23 June 2020.

  11. S. Utada, Y. Joh, M. Osawa, T. Yokokawa, T. Kobayashi, K. Kawagishi, S. Suzuki, and H. Harada: Superalloys 2016 (TMS, Seven Springs, Champion, 2016).

    Google Scholar 

  12. S. Utada, Y. Joh, M. Osawa, T. Yokokawa, T. Sugiyama, T. Kobayashi, K. Kawagishi, S. Suzuki, and H. Harada: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 4029–41.

    Article  Google Scholar 

  13. T. Sugiyama, S. Utada, T. Yokokawa, M. Osawa, K. Kawagishi, S. Suzuki, and H. Harada: Metall. Mater. Trans. A, 2019, vol. 50, pp. 3903–11.

    Article  CAS  Google Scholar 

  14. C. Tabata, K. Kawagishi, J. Uzuhashi, T. Ohkubo, K. Hono, T. Yokokawa, H. Harada, and S. Suzuki: Scr. Mater., 2021, vol. 194, 113616.

    Article  CAS  Google Scholar 

  15. Y. Kishimoto, T. Kono, T. Horie, T. Yokokawa, M. Osawa, K. Kawagishi, S. Suzuki, and H. Harada: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 1450–62.

    Article  Google Scholar 

  16. C. Tabata, K. Kawagishi, J. Uzuhashi, T. Ohkubo, T. Yokokawa, H. Harada, and S. Suzuki: Metall. Mater. Trans. A, 2022, vol. 53, pp. 2452–58.

    Article  CAS  Google Scholar 

  17. T. Yokokawa, H. Harada, K. Kawagishi, M. Sakamoto, M. Osawa, Y. Takata, M. Yuyama, T. Kobayashi, T. Sugiyama, and S. Suzuki: Superalloys 2020, TMS, Seven Springs, Champion, 2020, pp. 400–07.

  18. T. Xu, Y. Su, T. Shi, and X. Zhang: Ceram. Int., 2021, vol. 47, pp. 2165–71.

    Article  CAS  Google Scholar 

  19. M. Chen, N. Wang, J. Yu, and A. Yamaguchi: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 1953–59.

    Article  CAS  Google Scholar 

  20. Y. Azakli, K.O. Gunduz, S. Cengiz, Y. Gencer, and M. Tarakci: Oxid. Met., 2021, vol. 95, pp. 135–56.

    Article  CAS  Google Scholar 

  21. J. J. deBarbadillo: Superalloys 1976, Seven Springs, Champion, 1976, pp. 95–107.

  22. T. Gheno, G.H. Meier, and B. Gleeson: Oxid. Met., 2015, vol. 84, pp. 185–209.

    Article  CAS  Google Scholar 

  23. K.T. Chiang, G.H. Meier, and R.A. Perkins: J. Mater. Energ. Syst., 1984, vol. 6, pp. 71–86.

    Article  CAS  Google Scholar 

  24. K. Jung, F.S. Pettit, and G.H. Meier: Mater. Sci. Forum, 2008, vol. 595–598, pp. 805–12.

    Article  Google Scholar 

  25. R.J. Fruehan: Metall. Trans. B, 1978, vol. 9B, pp. 287–92.

    Article  CAS  Google Scholar 

  26. T. Degawa and T. Ototani: Tetsu-to-Hagané, 1987, vol. 73, pp. 1684–90.

    Article  CAS  Google Scholar 

  27. J.F. Elliot and M. Gleiser: Thermochemistry for Steelmaking, vol. 1, Addison-Wesley, 1960.

  28. S. Nagasaki: Metals Databook, 3rd ed., Japan Institute of Metals and Materials, Japan, 1993, pp. 96–97.

  29. I. Barin: Thermochemical Data of Pure Substances, 3rd ed. VCH Verlagsgesellschaft mbH, Weinheim and VCH Publishers, New York, 1995.

    Book  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Program (SIP), “Materials Integration for revolutionary design system of structural materials” (Funding agency: JST). The authors would like to express our gratitude to Dr. Makoto Osawa for the helpful discussions. We also would like to thank Ms. Kyoko Suzuki for the support of microstructural investigation, and Mr. Yuji Takata for the preparation of the single crystal alloys.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihiro Tabata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabata, C., Kawagishi, K., Yokokawa, T. et al. Effect of Ca Addition on the Oxidation Resistance of Ni–Al Alloy. Metall Mater Trans A 54, 1937–1945 (2023). https://doi.org/10.1007/s11661-022-06936-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06936-3

Navigation