Skip to main content
Log in

Inhibition of Intergranular Corrosion in Austenitic Stainless Steels Through Critical Near-Surface Plastic Deformation and Aging

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Inhibition of high intergranular corrosion susceptibility (HIGCS) in austenitic stainless steels can be achieved by healing Cr-depleted zones through microstructural changes. A combination of near-surface plastic deformation introduced by shot-peening (SP) and aging is used to promote Cr diffusion by exposing nanocrystalline structures to high temperatures. The extent of Cr diffusion level was found to be controlled by the grain size and dislocation density. In a highly deformed layer, HIGCS inhibition process is accelerated due to its high density of boundaries and dislocations. However, an undesirable Cr-rich sigma phase precipitates in the severely SPed state during aging leading to the formation of new Cr-depleted zones. The thermal stability and general corrosion resistance are affected during the HIGCS inhibition process. The main objective of this work is to efficiently improve the intergranular corrosion resistance through a combination of near-surface grain refinement introduced by SP and a subsequent aging treatment without degrading the thermal stability and general corrosion resistance of the material. A criterion based on plastic deformation critical state controlled by parameters of the SP process, viz. pressure and time, is proposed to avoid undesirable Cr-rich sigma phase, and be sufficient for Cr-depleted zones to heal. In that way, the efficiency and stability of the HIGCS inhibition process are ensured. The required aging time to obtain HIGCS inhibition was considerably shortened (viz. 10 hours at 650 °C) by choosing an optimal critical deformation level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. R. Viswanathan, J. Sarver, and J.M. Tanzosh: J. Mater. Eng. Perform., 2006, vol. 15, pp. 255–74.

    Article  CAS  Google Scholar 

  2. X. Wang, Y. Li, D. Chen, and J. Sun: Mater. Sci. Eng. A, 2019, vol. 754, pp. 238–45.

    Article  CAS  Google Scholar 

  3. J. Jiang and L. Zhu: Mater. Sci. Eng. A, 2012, vol. 539, pp. 170–76.

    Article  CAS  Google Scholar 

  4. O. Ping, H. Xing, and J. Sun: Metall. Mater. Trans. A., 2014, vol. 46A, pp. 1–5.

    Google Scholar 

  5. M. Naghizadeh and H. Mirzadeh: Metall. Mater. Trans. A., 2016, vol. 47A, pp. 5698–5703.

    Article  Google Scholar 

  6. K. Kaneko, T. Fukunaga, K. Yamada, N. Nakada, M. Kikuchi, Z. Saghi, J.S. Barnard, and P.A. Midgley: Scripta Mater., 2011, vol. 65, pp. 509–12.

    Article  CAS  Google Scholar 

  7. Y. Gao, C. Zhang, X. Xiong, Z. Zheng, and M. Zhu: Eng. Fail. Anal., 2012, vol. 24, pp. 26–32.

    Article  CAS  Google Scholar 

  8. A. Yae Kina, V.M. Souza, S.S.M. Tavares, J.M. Pardal, and J.A. Souza: Mater. Charact., 2008, vol. 59, pp. 651–55.

    Article  Google Scholar 

  9. A. Yazdanpanah, L. Pezzato and M. Dabalà, Engineering Failure Analysis 2022, vol. 142.

  10. M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, and I. Karibe: Acta Mater., 2002, vol. 50, pp. 2331–41.

    Article  CAS  Google Scholar 

  11. S. Kobayashi, R. Kobayashi, and T. Watanabe: Acta Mater., 2016, vol. 102, pp. 397–405.

    Article  CAS  Google Scholar 

  12. Hu. Changliang, S. Xia, H. Li, T. Liu, B. Zhou, W. Chen, and N. Wang: Corros. Sci., 2011, vol. 53, pp. 1880–86.

    Article  Google Scholar 

  13. P. Ganesh, A.V. Kumar, C. Thinaharan, N.G. Krishna, R.P. George, N. Parvathavarthini, S.K. Rai, R. Kaul, U.K. Mudali, and L.M. Kukreja: Surf. Coat. Technol., 2013, vol. 232, pp. 920–27.

    Article  CAS  Google Scholar 

  14. A.Y. Chen, W.F. Hu, D. Wang, Y.K. Zhu, P. Wang, J.H. Yang, X.Y. Wang, J.F. Gu, and J. Lu: Scripta Mater., 2017, vol. 130, pp. 264–68.

    Article  CAS  Google Scholar 

  15. Q. Zhou, S. Ping, X. Meng, R. Wang, and Y. Gao: J. Mater. Eng. Perform., 2017, vol. 26, pp. 6130–39.

    Article  CAS  Google Scholar 

  16. M. Hillert and R. Lagneborg: J. Mater. Sci., 1971, vol. 6, pp. 208–12.

    Article  CAS  Google Scholar 

  17. S. Kolli, V. Javaheri, J. Komi, and D. Porter: Metals, 2019, vol. 9, p. 1.

    Article  Google Scholar 

  18. H. Agrawal, P. Sharma, P. Tiwari, R.V. Taiwade, and R.K. Dayal: Trans. Indian Inst. Met., 2015, vol. 68, pp. 501–11.

    Article  CAS  Google Scholar 

  19. R. Singh, B. Ravikumar, A. Kumar, P.K. Dey, and I. Chattoraj: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2441–47.

    Article  CAS  Google Scholar 

  20. R.V. Taiwade, R. Shukla, H. Vashishtha, A.V. Ingle, and R.K. Dayal: ISIJ Int., 2013, vol. 53, pp. 2206–12.

    Article  CAS  Google Scholar 

  21. R. Wang, Z. Zheng, Q. Zhou, and Y. Gao: Corros. Sci., 2016, vol. 111, pp. 728–41.

    Article  CAS  Google Scholar 

  22. H. Liu, Y. Wei, C.K.I. Tan, D.T. Ardi, D.C.C. Tan, and C.J.J. Lee: Mater. Charact., 2020, vol. 168, p. 1.

    Article  Google Scholar 

  23. Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, and L. Zuo: Mater. Sci. Eng. A, 2012, vol. 552, pp. 514–22.

    Article  CAS  Google Scholar 

  24. M. Naghizadeh and H. Mirzadeh: Metall. Mater. Trans. A., 2016, vol. 47A, pp. 4210–16.

    Article  Google Scholar 

  25. R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, and A. Bachmaier: Annu. Rev. Mater. Res., 2010, vol. 40, pp. 319–43.

    Article  CAS  Google Scholar 

  26. R. Wang, Q. Zhou, Z. Zheng, and Y. Gao: Corros. Sci., 2018, vol. 143, pp. 390–402.

    Article  CAS  Google Scholar 

  27. Q. Zhou, J. Liu, and Y. Gao: Mater. Des., 2019, vol. 181, p. 1.

    Google Scholar 

  28. Q. Zhou, R. Wang, Z. Zheng, and Y. Gao: Appl. Surf. Sci., 2018, vol. 462, pp. 804–14.

    Article  CAS  Google Scholar 

  29. E.O. Hall and S.H. Algie: Metall. Rev., 1966, vol. 11, pp. 61–88.

    Article  Google Scholar 

  30. A. Bahrami and A. Ashrafi: Eng. Fail. Anal., 2017, vol. 82, pp. 56–63.

    Article  CAS  Google Scholar 

  31. H. Gleiter: Acta Mater., 2000, vol. 48, pp. 1–29.

    Article  CAS  Google Scholar 

  32. G. Palumbo, S.J. Thorpe, and K.T. Aust: Scr. Metall. Mater., 1990, vol. 24, pp. 1347–50.

    Article  CAS  Google Scholar 

  33. Y. Cao, Y.B. Wang, X.H. An, X.Z. Liao, M. Kawasaki, S.P. Ringer, T.G. Langdon, and Y.T. Zhu: Acta Mater., 2014, vol. 63, pp. 16–29.

    Article  CAS  Google Scholar 

  34. Li. Liu, Y. Li, and F. Wang: J. Mater. Sci. Technol., 2010, vol. 26, pp. 1–4.

    Article  Google Scholar 

  35. Z.J. Zheng, Y. Gao, Y. Gui, and M. Zhu: Corros. Sci., 2012, vol. 54, pp. 60–67.

    Article  CAS  Google Scholar 

  36. C. Pan, L. Liu, Y. Li, B. Zhang, and F. Wang: J. Electrochem. Soc., 2012, vol. 159, pp. C453–60.

    Article  CAS  Google Scholar 

  37. Lv. Jinlong and L. Hongyun: Mater. Sci. Eng. C, 2014, vol. 34, pp. 484–90.

    Article  Google Scholar 

  38. Yu. Xingguo Feng, Y.T. Zuo, X. Zhao, and J. Zhao: Corros. Sci., 2012, vol. 65, pp. 542–48.

    Article  Google Scholar 

  39. Lv. Jinlong, G. Wenli, and L. Tongxiang: J. Alloy. Compd., 2016, vol. 686, pp. 176–83.

    Article  Google Scholar 

  40. T. Balusamy, T.S.N.S. Narayanan, K. Ravichandran, S. Park, and M.H. Lee: Corros. Sci., 2013, vol. 74, pp. 332–44.

    Article  CAS  Google Scholar 

  41. K.D. Ralston and N. Birbilis: Corrosion, 2010, vol. 66, pp. 0750051–7500513.

    Article  Google Scholar 

  42. H.Y. Miao, D. Demers, S. Larose, C. Perron, and M. Lévesque: J. Mater. Process. Technol., 2010, vol. 210, pp. 2089–2102.

    Article  CAS  Google Scholar 

  43. V. Cihal and R. Stefec: Electrochim. Acta, 2001, vol. 46, pp. 3867–77.

    Article  CAS  Google Scholar 

  44. H.-J. Kim, S.-H. Jeon, S.-T. Kim, I.-S. Lee, Y.-S. Park, K.-T. Kim, and Y.-S. Kim: Corros. Sci., 2014, vol. 87, pp. 60–70.

    Article  CAS  Google Scholar 

  45. Q. Pan, H. Zhou, Lu. Qiuhong, H. Gao, and Lu. Lei: Nature, 2017, vol. 551, pp. 214–17.

    Article  CAS  Google Scholar 

  46. H. Van Swygenhoven, D. Farkas, and A. Caro: Phys. Rev. B, 2000, vol. 62, pp. 831–38.

    Article  Google Scholar 

  47. K. Tomimura, S. Takaki, and Y. Tokunaga: ISIJ Int., 1991, vol. 31, pp. 1431–37.

    Article  CAS  Google Scholar 

  48. R.K. Wang, Z.J. Zheng, and Y. Gao: J. Mater. Eng. Perform., 2015, vol. 25, pp. 20–28.

    Article  Google Scholar 

  49. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74.

    Article  Google Scholar 

  50. K. Lu: Nat. Rev. Mater., 2016, vol. 1, p. 1.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51471072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Gao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Busso, E.P., Zheng, Z. et al. Inhibition of Intergranular Corrosion in Austenitic Stainless Steels Through Critical Near-Surface Plastic Deformation and Aging. Metall Mater Trans A 54, 896–908 (2023). https://doi.org/10.1007/s11661-022-06935-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06935-4

Navigation